Instructions: Complete each of the following on separate, stapled sheets of paper.

1. Give general solutions to the second-order homogeneous linear ODEs below, given that y_{1} is a solution (verify).
(a) $x y^{\prime \prime}+y^{\prime}=0 ; \quad y_{1}=\ln (x)$
(c) $x^{2} y^{\prime \prime}-3 x y^{\prime}+5 y=0 ; \quad y_{1}=x^{2} \cos (\ln (x))$
(b) $4 x^{2} y^{\prime \prime}+y=0 ; \quad y_{1}=\sqrt{x} \ln (x)$
(d) $\left(1-x^{2}\right) y^{\prime \prime}+2 x y^{\prime}=0 ; \quad y_{1}=1$
2. Solve the following nonhomogeneous linear ODEs via reduction of order (Hint: Solve the associated homogeneous equation, and then pick one of those solutions to use for y_{1} when solving the nonhomogeneous equation).
(a) $y^{\prime \prime}+y^{\prime}=1$
(b) $y^{\prime \prime}-4 y^{\prime}+3 y=x$
3. Write each ODE below in the form $L(y)=g(x)$ for L a linear differential operator; factor L if possible.
(a) $9 y^{\prime \prime}-4 y=\sin (x)$
(c) $y^{\prime \prime \prime}+4 y^{\prime \prime}+3 y^{\prime}=x^{2} \cos (x)-3 x$
(b) $2 y^{\prime \prime}-3 y^{\prime}-2 y=1$
(d) $y^{(4)}-8 y^{\prime \prime}+16 y=\left(x^{3}-2 x\right) e^{4 x}$
4. Verify the given differential operator is an annihilator of the indicated function.
(a) $D^{4} ; \quad y=10 x^{3}-2 x$
(c) $(D-2)(D+5) ; \quad y=e^{2} x+3 e^{-5 x}$
(b) $2 D-1 ; \quad y=4 e^{\frac{x}{2}}$
(d) $D^{2}+64 ; \quad y=2 \cos (8 x)-5 \sin (8 x)$
5. Find a linear differential operator that annihilates the given function.
(a) $x^{3}(1-5 x)$
(c) $1+\sin (x)$
(e) $e^{-x}+2 x e^{x}-x^{2} e^{x}$
(b) $1+7 e^{2 x}$
(d) $8 x-\sin (x)+10 \cos (5 x)$
(f) $3+e^{x} \cos (2 x)$
6. Find linearly independent functions which are annhilated by the given differential operator.
(a) $D^{2}-9 D-36$
(b) $D^{2}+5$
(c) $D^{3}-10 D^{2}+25 D$
(d) $D^{2}(D-5)(D-7)$
7. Use the method of undetermined coefficients to solve the following ODEs.
(a) $y^{\prime \prime}-9 y=54$
(d) $y^{\prime \prime}+y^{\prime}+\frac{1}{4} y=e^{x}(\sin (3 x)-\cos (3 x))$
(b) $y^{\prime \prime}-2 y^{\prime}+y=x^{3}+4 x$
(e) $y^{\prime \prime}+y^{\prime}+y=x \sin (x)$
(c) $y^{\prime \prime}+4 y=4 \cos (x)+3 \sin (x)-8$
(f) $2 y^{\prime \prime \prime}-3 y^{\prime \prime}-3 y^{\prime}+2 y=\left(e^{x}+e^{-x}\right)^{2}$
8. Solve the following IVPs.
(a) $y^{\prime \prime}+y=8 \cos (2 x)-4 \sin (x) ; \quad y\left(\frac{\pi}{2}\right)=1, \quad y^{\prime}\left(\frac{\pi}{2}\right)=0$
(b) $y^{(4)}-y^{(3)}=x+e^{x} ; \quad y(0)=0, \quad y^{\prime}(0)=0, \quad y^{\prime \prime}(0)=0, \quad y^{\prime \prime \prime}(0)=0$
