Instructions: Complete each of the following on separate, stapled sheets of paper.

1. Verify the given family is a solution to the indicated ODE and solve the IVP with the given ICs.
(a) $y^{\prime}=y-y^{2}$ has solution family $y=\frac{1}{1+c e^{-x}}$.
i. $y(0)=-\frac{1}{3}$
ii. $y(-1)=2$
(b) $y^{\prime}+2 x y^{2}=0$ has solution family $y=\frac{1}{x^{2}+c}$.
i. $y(2)=\frac{1}{3}$
ii. $y(0)=1$
(c) $x^{\prime \prime}+x=0$ has solution family $x=c_{1} \cos (t)+c_{2} \sin (t)$.
i. $x(0)=-1, x^{\prime}(0)=8$
ii. $x\left(\frac{\pi}{6}\right)=\frac{1}{2}, x^{\prime}\left(\frac{\pi}{6}\right)=0$
(d) $x^{\prime \prime}-x=0$ has solution family $x=c_{1} e^{t}+c_{2} e^{-t}$.
i. $x(1)=0, x^{\prime}(1)=e$
ii. $x(0)=0, x^{\prime}(0)=0$
2. Determine regions of the $x y$-plane for which the ODEs below have unique solutions through $\left(x_{0}, y_{0}\right)$.
(a) $y^{\prime}=y^{2 / 3}$
(c) $x y^{\prime}=y$
(e) $\left(4-y^{2}\right) y^{\prime}=x^{2}$
(g) $\left(x^{2}+y^{2}\right) y^{\prime}=y^{2}$
(b) $y^{\prime}=\sqrt{x y}$
(d) $y^{\prime}-y=x$
(f) $\left(1+y^{3}\right) y^{\prime}=x^{2}$
(h) $(y-x) y^{\prime}=x+y$
3. Consider the ODE $y^{\prime}=\sqrt{y^{2}-9}$. Are we guaranteed a unique solution through the points below?
(a) $(1,4)$
(b) $(5,3)$
(c) $(2,-3)$
(d) $(-1,1)$
4. Prove that each of the following ODEs has a unique solution through every point $\left(x_{0}, y_{0}\right)$ in the $x y$-plane.
(a) $y^{\prime}=1+y^{2}$
(b) $y^{\prime}=x y^{3}$
5. Suppose $f(t)$ has $f^{\prime \prime}(t)$ exists for all real t. Prove $y^{\prime}=f(y)$ has a unique solution through every point $\left(x_{0}, y_{0}\right)$.
