Instructions: Complete each of the following on separate, stapled sheets of paper.

1. Use Euler's Method to approximate the indicated value within four decimal places (do so by hand); use step sizes $h=.1$ first and then $h=.05$.
(a) $y^{\prime}=2 x-3 y+1, \quad y(1)=5$;
(b) $y^{\prime}=x y, \quad y(1)=1 ; \quad y(1.5)$
2. Use the Improved Euler's Method to approximate the indicated value within four decimal places (do so by hand); use step sizes $h=.1$ first and then $h=.05$.
(a) $y^{\prime}=2 x-3 y+1, \quad y(1)=5$;
$y(1.2)$
(b) $y^{\prime}=x y, \quad y(1)=1 ; \quad y(1.5)$
3. Use the Order Four Runge-Kutta Method to approximate the indicated value within four decimal places (do so by hand); use step sizes $h=.1$ first and then $h=.05$.
(a) $y^{\prime}=2 x-3 y+1, \quad y(1)=5 ; \quad y(1.2)$
(b) $y^{\prime}=x y, \quad y(1)=1 ; \quad y(1.5)$
4. Compare the approximations you've obtained above. Which converges most quickly?
