Instructions: Complete each of the following on separate, stapled sheets of paper.

1. Is the IVP $y^{\prime}=\sqrt{y^{2}-9}$ guaranteed to have a unique solution with $\operatorname{IC} y(2)=3$? What about with $\operatorname{IC} y(-1)=1$?
2. Solve each of the ODEs below.
(a) $\frac{d y}{d x}=e^{x} \cos (y)$
(b) $\left(1+\ln (x)+\frac{y}{x}\right) d x=(1-\ln (x)) d y$
(c) $\left(10-6 y+e^{-3 x}\right) d x-2 d y=0$
(d) $\frac{d r}{d \theta}+r \sec (\theta)=\cos (\theta)$
(e) $x \frac{d y}{d x}+y=\frac{1}{y^{2}}$
(f) $\left(y^{2}+x y\right) d x-x^{2} d y=0$
3. Solve each of the IVPs below.
(a) $y \frac{d y}{d x}+\sin (x)=0, \quad y(0)=1$
(b) $(x+y)^{2} d x+\left(2 x y+x^{2}-1\right) d y=0, \quad y(1)=1$
(c) $\left(x^{2}+y^{2}-5\right) d x=(y+x y) d y, \quad y(4)=0$
(d) $x(x+1) \frac{d y}{d x}+x y=1, \quad y(e)=1$
(e) $x^{2} \frac{d y}{d x}-2 x y=3 y^{4}, \quad y(1)=\frac{1}{2}$
(f) $\left(x+y \exp \left(\frac{y}{x}\right)\right) d x-x \exp \left(\frac{y}{x}\right) d y=0, \quad y(1)=2$
