Notes on the Pigeonhole Principle

Lecturer: Chris Eppolito, Scribe: Brian Liew

16 March 2020

Definition. A (weak) partition of a set S is a collection $S_{1}, S_{2}, \cdots, S_{n}$ of pairwise disjoint subsets of S such that $S=\bigcup_{k=1}^{n} S_{k}$.

Proposition (Pigeonhole Principle). Let S be a set and let $\left\{S_{1}, S_{2}, S_{3}, \ldots, S_{k}\right\}$ be a weak partition of S. If $\# S>k$, then there is an index i such that $\# S_{i}>1$.
Remark. This means given $k+1$ objects sorted into k boxes, some box has at least 2 objects.
Example 1. In every collection S of $k \geq 2$ integers, some two are congruent modulo $k-1$.

Solution: There are $k-1$ "boxes" (i.e. parts) of the partition $S_{i}:=\{a \in S: a \equiv i(\bmod k-1)\}$ for $0 \leq i \leq k-2$, and $\# S=k$. Thus, as there are $k-1$ parts and k integers to consider, there is a i so that $\# S_{i}>1$ by the Pigeonhole Principle.

Example 2. A sports team plays games over the course of a 30 -day month. They play at least 1 game per day, but no more than 45 total. Show there's some number of consecutive days during which they play exactly 14 games.

Solution: Let a_{i} denote the number of games played on or before day i. This yields a sequence $a_{1}, a_{2}, \ldots, a_{30}$ of positive integers. Note $i \leq a_{i}<a_{i+1} \leq 45$ for all $i \in[29]$. Consider also the numbers $a_{1}+14, a_{2}+14, \ldots, a_{30}+14$. This yields 60 numbers. Because $1 \leq a_{i} \leq 45$ for all $i \in$ [30], we obtain $15 \leq a_{i}+14 \leq 59$ for all $i \in[30]$. Define

$$
b_{i}:= \begin{cases}a_{i} & \text { if } i \in[30] \\ a_{i-30}+14 & \text { if } i \in[60] \backslash[30] .\end{cases}
$$

For all $i \in[60]$ we have $1 \leq b_{i} \leq 59$. Let $S_{k}:=\left\{i \in[60]: b_{i}=k\right\}$ for $1 \leq k \leq 59$. There 59 boxes for 60 elements, so by the Pigeonhole Principle there is an index $k \in[59]$ such that $\# S_{k} \geq 2$. Note that $a_{i} \neq a_{j}$ unless $i=j$ because $a_{i}<a_{i+1}$ for all $i \in[29]$; thus for distinct $i, j \in S_{k}$ we may assume $i \leq 30<j \leq 60$. Thus $b_{j}=a_{j-30}+14$ and $b_{i}=a_{i}$ has $a_{i}=k=a_{j-30}+14$. In particular $a_{i}-a_{j-30}=14$, so between days $(j-30)+1$ and i the team played 14 games exactly.

Example 3. Every collection of $n+1$ members of [2n] has some pair related by divisibility.
I.e. given $S=\left\{a_{1}, a_{2}, \ldots, a_{n+1}\right\} \subseteq[2 n]$, there are distinct indices $i, j \in[n+1]$ with $a_{i} \mid a_{j}$.

Solution: By the Fundamental Theorem of Arithmetic we may express every member of S as $a_{i}=$ $2^{e_{i}} q_{i}$ where $e_{i} \in \mathbb{N}$ and $q_{i} \in \mathbb{N}$ is odd. Consider the set $T=\left\{q_{1}, q_{2}, \ldots, q_{n+1}\right\}$. Partition T into $T_{k}:=\left\{i \in[n+1]: q_{i}=k\right\}$ for $k \in[2 n]$ odd; there are n odd integers in $[2 n]$ and $n+1$ indices, so by the Pigeonhole Principle there are distinct indices $i, j \in[n+1]$ with $q_{i}=k=q_{j}$. Choosing our notation carefully, we may assume $e_{i} \leq e_{j}$ (if they weren't, we would swap the roles of i and j). Hence $a_{i}=2^{e_{i}} k$ and $a_{j}=2^{e_{j}} k=2^{e_{i}+n} k=2^{e_{i}} k 2^{n}=a_{i} 2^{n}$ for some $n \in \mathbb{N}$, and we obtain $a_{i} \mid a_{j}$ as desired.

