Notes on Weak Induction

Scribe: Shawn Salick Lecturer/Editor: Chris Eppolito

17 February 2020

Written in predicate logic, the formula for weak mathematical induction is:

$$
\left(P(0) \wedge \forall_{k \in \mathbb{N}}[P(k) \rightarrow P(k+1)]\right) \rightarrow \forall_{n \in \mathbb{N}} P(n)
$$

Given a statement $P(n)$ defined over for all $n \in \mathbb{N}$, to prove $\forall_{n \in \mathbb{N}} P(n) \ldots$

1. Prove $P(0)$ is true. This is the Base Case.
2. Prove $P(k) \rightarrow P(k+1)$ for all $k \in \mathbb{N}$. This is the Inductive Step.

We may then conclude that $P(n)$ is true for all $n \in \mathbb{N}$.
The rest of these notes consists of many examples of the technique above.
Proposition. For all $n \in \mathbb{N}$ we have

$$
\sum_{j=0}^{n} j=\frac{n(n+1)}{2} .
$$

Proof. We proceed by weak mathematical induction on n . For $n \in \mathbb{N}$ let

$$
P(n): \sum_{j=0}^{n} j=\frac{n(n+1)}{2} .
$$

Base Case: Notice that $\sum_{j=0}^{0} j=0=\frac{0(0+1)}{2}$. Hence $P(0)$ is true and the base case holds.
Inductive Step: Let $k \in \mathbb{N}$ be arbitrary and assume for induction

$$
P(k): \sum_{j=0}^{k} j=\frac{k(k+1)}{2} .
$$

By the inductive hypothesis and basic arithmetic we obtain

$$
\sum_{j=0}^{k+1} j=\sum_{j=0}^{k} j+(k+1) \stackrel{I H}{=} \frac{k(k+1)}{2}+(k+1)=\frac{(k)(k+1)}{2}+\frac{2(k+1)}{2}=\frac{(k+1)(k+2)}{2} .
$$

Hence we have shown $P(k+1)$ is true; thus the inductive step holds.
Hence the proposition holds by weak mathematical induction.
Proposition. For all $n \in \mathbb{N}$ we have $n<2^{n}$.
Proof. We proceed by weak mathematical induction on n.
Base Case: For $n=0$ and $n=1$ we have $0<1=2^{0}$ and $1<2=2^{1}$. Hence the base case holds.
Inductive Step: Let $k \in \mathbb{N}$ be arbitrary and assume $k<2^{k}$; note that we may assume $k \geq 1$. We compute

$$
k+1<2^{k}+1 \leq 2^{k}+2^{k}=2 \cdot 2^{k}=2^{k+1} .
$$

Hence the inductive step holds.
Hence the proposition holds by weak mathematical induction.

Proposition. For all $n \in \mathbb{N}$ we have

$$
\sum_{j=1}^{n}(2 j-1)=n^{2}
$$

Proof. We proceed by weak mathematical induction on n.
Base Case: We have $\sum_{j=1}^{(0)}(2(0)-1)=0=0^{2}$, so the base case holds.
Inductive Step: Let $k \in \mathbb{N}$ be arbitrary and assume $\sum_{j=1}^{k}(2 j-1)=k^{2}$. We compute

$$
\sum_{j=1}^{k+1}(2 j-1)=\sum_{j=1}^{k}(2 j-1)+(2(k+1)-1)=\left(k^{2}\right)+2 k+1=(k+1)^{2}
$$

Hence the inductive step holds.
Hence the proposition holds by weak mathematical induction.
Proposition. For all $n \in \mathbb{N}$ we have $3 \mid\left(n^{3}-n\right)$.
Proof. We proceed by weak mathematical induction on n.
Base Case: For $n=0$, we have $n^{3}-n=0^{3}-0=0=3 \cdot 0$. Hence $3 \mid 0^{3}-0$ and the base case holds.
Inductive Step: Let $k \in \mathbb{N}$ be an arbitrary number and assume $3 \mid\left(k^{3}-k\right)$. By the definition of divisibility, there is an in integer $m \in \mathbb{Z}$ such that $k^{3}-k=3 m$. Now we compute

$$
\begin{aligned}
(k+1)^{3}-(k+1) & =\left(k^{3}+3 k^{2}+3 k+1\right)-k-1 \\
& =\left(k^{3}-k\right)+(1-1)+3 k^{2}+3 k \\
& =3 m+3 k^{2}+3 k \\
& =3\left(m+k^{2}+k\right)
\end{aligned}
$$

Now $m+k^{2}+k \in \mathbb{Z}$ by closure properties, so $3 \mid\left((k+1)^{3}-(k+1)\right)$. Hence the inductive step holds.
Hence the proposition holds by weak mathematical induction.
Proposition. For all $n \geq 0$, we have $57 \mid\left(7^{n+2}+8^{2 n+1}\right)$.
Proof. We proceed by weak mathematical induction on n.
Base Case: Note $57 \cdot 1=57=49+8=7^{(0)+2}+8^{2(0)+1}$, so $57 \mid\left(7^{(0)+2}+8^{2(0)+1}\right)$ as desired.
Inductive Step: Let $k \in \mathbb{N}$ be arbitrary number and assume $57 \mid\left(7^{k+2}+8^{2 k+1}\right)$. By definition of divisibility we have $7^{k+2}+8^{2 k+1}=57 m$ for some $m \in \mathbb{Z}$. Now we compute

$$
\begin{aligned}
7^{(k+1)+2}+8^{2(k+1)+1} & =7^{k+3}+8^{2 k+3} \\
& =7^{k+2} \cdot 7+8^{2 k+1} \cdot 8^{2} \\
& =\left(\left(7^{k+2} \cdot 7\right)+\left(8^{2 k+1} \cdot 8^{2}\right)\right) \\
& =\left(7^{k+2} \cdot 7\right)+\left(\left(8^{2 k+1}\right) \cdot(7+57)\right) \\
& =7\left(7^{k+2}+8^{2 k+1}\right)+\left(8^{2 k+1} \cdot 57\right) \\
& =7(57 m)+\left(8^{2 k+1} \cdot 57\right) \\
& =57\left(7 m+8^{2 k+1}\right)
\end{aligned}
$$

Thus $57 \mid\left(7^{(k+1)+2}+8^{2(k+1)+1}\right)$ as $7 m+8^{2 k+1} \in \mathbb{Z}$ by closure properties, and the induction step holds.
Hence the original statement holds by weak induction.

