Notes on Modular Arithmetic

Scribe: Diantha Gardener Lecturer/Editor: Chris Eppolito

10 February 2020

Proposition (Division Algorithm). Let $n, d \in \mathbb{Z}$ with $d \in \mathbb{Z}^{+}$. Then there exists a unique pair $q, r \in \mathbb{Z}$ satisfying both $n=d q+r$ and $0 \leq r \leq d-1$.

In $n=d q+r$, we d is the dividend or modulus, q is the quotient, and r is the remainder. This proposition is better called the Quotient-Remainder Theorem.

Example 1. For $n=7$ and $d=3$ we have $7=n=d q+r=3 \cdot 2+1$.
Definition. Given modulus $d \in \mathbb{Z}^{+}$, for any $a, b \in \mathbb{Z}$. We say a is equivalent to b modulo d when a and b have the same remainder under division by d. We write $a \equiv b(\bmod 3)$

Example 2. We have the following reductions modulo 3 .

$$
\begin{array}{llll}
-3=3 \cdot(-1)+0 \equiv 0 & (\bmod 3) & 0=3 \cdot 0+0 \equiv 0 & (\bmod 3) \\
-2=3 \cdot(-1)+1 \equiv 1 & (\bmod 3) & 1=3 \cdot 0+1 \equiv 1 & (\bmod 3) \\
-1=3 \cdot(-1)+2 \equiv 2 & (\bmod 3) & 2=3 \cdot 0+2 \equiv 2 & (\bmod 3)
\end{array}
$$

Proposition. Let $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^{+}$. The following are equivalent.

1. We have $a \equiv b(\bmod m)$.
2. Both a and b have the same remainder modulo m.
3. We have $m \mid(a-b)$.
4. We have $a=m k+b$ for some $k \in \mathbb{Z}$.

Proof. Let $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^{+}$.
$(1 \Longleftrightarrow 2)$: This is the definition of $a \equiv b(\bmod m)$.
$(2 \Longrightarrow 3)$: Assume a and b have the same remainder modulo m. Applying the Division Algorithm we obtain $a=m q_{1}+r$ and $b=m q_{2}+r$ for some $q_{1}, q_{2}, r \in \mathbb{Z}$ with $0 \leq r \leq m-1$. Now

$$
a-b=\left(m q_{1}+r\right)-\left(m q_{2}+r\right)=\left(m q_{1}-m q_{2}\right)+(r-r)=m\left(q_{1}-q_{2}\right)
$$

and $q_{1}-q_{2} \in \mathbb{Z}$ by closure of \mathbb{Z} under subtraction. Hence $m \mid(a-b)$ by definition.
$(3 \Longrightarrow 4)$: Assume $m \mid(a-b)$. By definition of divisibility there is a $k \in \mathbb{Z}$ s.t. $a-b=m k$. Adding b to both sides we obtain $a=(a-b)+b=m k+b$.
$(4 \Longrightarrow 1)$: Suppose $a=m k+b$ for some $k \in \mathbb{Z}$. Note $b=m q+r$ for some $q, r \in \mathbb{Z}$ with $0 \leq r \leq m-1$ by the Division Algorithm. Now $a=m k+b=m k+(m q+r)=m(k+q)+r$; noting $k+q \in \mathbb{Z}$ by closure and $0 \leq r \leq m-1$, we have r is the remainder of a modulo m by the uniqueness of remainders. Hence a and b have the same remainder modulo m.

Proposition. Let $a, b, c, d \in \mathbb{Z}$ and $m \in \mathbb{Z}^{+}$. If $a \equiv c(\bmod m)$ and $b \equiv d(\bmod m)$, then

1. $a b \equiv c d(\bmod m)$, and
2. $a+b \equiv c+d(\bmod m)$.

Proof. Let $a, b, c, d \in \mathbb{Z}$ and $m \in \mathbb{Z}^{+}$satisfy $a \equiv c(\bmod m)$ and $b \equiv d(\bmod m)$. By the previous proposition, there are integers $k_{1}, k_{2} \in \mathbb{Z}$ such that $a=m k_{1}+c$ and $b=m k_{2}+d$.

Part 1: Taking the product we obtain

$$
a b=\left(m k_{1}+c\right)\left(m k_{2}+d\right)=m k_{1} m k_{2}+c m k_{2}+m k_{1} d+c d=m\left(k_{1} m k_{2}+c k_{2}+k_{1} d\right)+c d .
$$

Moreover, $k_{1} m k_{2}+c k_{2}+k_{1} d \in \mathbb{Z}$ by closure properties of \mathbb{Z}. Hence $a b \equiv c d(\bmod m)$ by previous proposition.
Part 2: Taking the sum we obtain

$$
a+b=\left(m k_{1}+c\right)+\left(m k_{2}+d\right)=m\left(k_{1}+k_{2}\right)+(c+d) .
$$

Moreover $k_{1}+k_{2} \in \mathbb{Z}$ by closure properties of \mathbb{Z}. Hence $a+b \equiv c+d(\bmod m)$ by previous proposition.
We conclude the original statement is true.
We obtain a new arithmetic system for each $m \in \mathbb{Z}^{+}$as follows. Define the class of integer a modulo m as $m \mathbb{Z}+a:=\{m q+a: q \in \mathbb{Z}\}$. When m is fixed in context, we sometimes write $[a]=m \mathbb{Z}+a$. The set of classes modulo m is denoted

$$
\mathbb{Z} / m \mathbb{Z}:=\{m \mathbb{Z}+a: a \in \mathbb{Z}\}=\{m \mathbb{Z}+r: 0 \leq r \leq m-1, r \in \mathbb{Z}\}
$$

Indeed, the class of an integer is equal to the class of its remainder. This is because $a=m q+r$ by the Division Algorithm and thus $a \equiv r(\bmod m)$ by our proposition above.

The operations modulo m are $[a] \cdot[b]=[a b]$ and $[a]+[b]=[a+b]$. Previous proposition yields that these operation are "well-defined", i.e. independent of choice of representatives.

Example 3. We make operation tables for $\mathbb{Z} / 6 \mathbb{Z}$ below.

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

\cdot	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

Note that in $\mathbb{Z} / 6 \mathbb{Z}$ we have $[2] \cdot[3]=[2 \cdot 3]=[6]=[0]$. Such elements $a, b \in \mathbb{Z} / m \mathbb{Z}$ with $a \neq[0] \neq b$ are called nontrivial zero divisors in $\mathbb{Z} / m \mathbb{Z}$. To better understand multiplication modulo m, we must understand zero-divisors. Obviously every divisor $d \mid m$ with $d \notin\{ \pm 1, \pm m\}$ yields a nontrivial zero-divisor of $\mathbb{Z} / m \mathbb{Z}$; indeed $m=d k$ for some $k \in \mathbb{Z}$ yields $[d] \cdot[k]=[d k]=[m]=[0]$, and the assumption $d \notin\{1, m\}$ yields $1<|k|<|m|$, so $[d] \neq[0] \neq[k]$. Dual to zero divisors are units; an $a \in \mathbb{Z}$ is a unit modulo $m \in \mathbb{Z}^{+}$when there is an $s \in \mathbb{Z}$ such that as $\equiv 1(\bmod m)$.

Example 4. We see 1 and 5 are the only units modulo 6 by examining the multiplication table.
We next study the greatest common divisor in order to obtain a characterization of units modulo m.
Definition. The greatest common divisor of integers $a, b \in \mathbb{Z}$, denoted $\operatorname{gcd}(a, b)$, is the largest integer which divides both a and b.

Remark. Note that $\operatorname{gcd}(0,0)$ is ill-defined because every integer divides 0 . Otherwise $\max (|a|,|b|)$ is an upper bound for $\operatorname{gcd}(a, b)$.

Example 5. We compute $\operatorname{gcd}(18,26)$ using the definition below.

$$
\begin{aligned}
\operatorname{gcd}(18,26) & =\max \{n \in \mathbb{Z}: n \mid 18 \text { and } n \mid 26\} \\
& =\max (\{n \in \mathbb{Z}: n \mid 18\} \cap\{n \in \mathbb{Z}: n \mid 26\}) \\
& =\max (\{ \pm 1, \pm 2, \pm 3, \pm 6, \pm 9, \pm 18\} \cap\{ \pm 1, \pm 2, \pm 13, \pm 26\}) \\
& =\max \{ \pm 1, \pm 2\} \\
& =2
\end{aligned}
$$

Remark. This method of computing $\operatorname{gcd}(a, b)$ by trial divisions is inefficient. There's a better way!
Algorithm (Euclid's Algorithm). Let $a, b \in \mathbb{Z}$ such that $(a, b) \neq(0,0)$.

1. Let $n_{0}:=\max (|a|,|b|)$ and $d_{0}:=\min (|a|,|b|)$.
2. While $d_{i} \neq 0$:
(a) Apply the Division Algorithm to obtain $n_{i}=d_{i} q_{i}+r_{i}$ for some $q_{i}, r_{i} \in \mathbb{Z}$ with $0 \leq r_{i}<d_{i}$.
(b) Set $n_{i+1}:=d_{i}$ and $d_{i+1}:=r_{i}$, increment i, and continue.
3. Output n_{k} (i.e. the last value of n).

Example 6. We compute gcd $(18,26)$ via Euclid's Algorithm.

$$
\begin{array}{lllr}
n_{0}:=26, & d_{0}:=18 & \rightsquigarrow & 26=18 \cdot 1+8 \\
n_{1}:=18, & d_{0}:=8 & \rightsquigarrow & 18=8 \cdot 2+2 \\
n_{2}:=8, & \rightsquigarrow & 8=2 \cdot 4+0 \\
n_{3}:=2, & d_{0}:=2 & & \operatorname{gcd}(18,26)=2 .
\end{array}
$$

Our next example illustrates the method of back substitution to obtain a nice expression for the gcd.
Example 7. We compute $\operatorname{gcd}(5,8)$ via Euclid's Algorithm.

$$
\begin{array}{llr}
8=5 \cdot 1+3 & \rightsquigarrow & 3=8-5 \cdot 1 \\
5=3 \cdot 1+2 & \rightsquigarrow & 5=5-3 \cdot 1 \\
3=2 \cdot 1+1 & \rightsquigarrow & 1=3-2 \cdot 1 \\
2=1 \cdot 2+0 & \rightsquigarrow & \operatorname{gcd}(5,8)=1
\end{array}
$$

On the other hand, using the right column of the above table we have the following.

$$
\begin{aligned}
\operatorname{gcd}(5,8) & =1=3 \cdot 1-2 \cdot 1 \\
& =3 \cdot 1-(5-3 \cdot 1) \cdot 1=3 \cdot 2-5 \cdot 1 \\
& =(8-5 \cdot 1) \cdot 2-5 \cdot 1=8 \cdot 2+5 \cdot(-3)
\end{aligned}
$$

Applying back substitution as above, we express $\operatorname{gcd}(a, b)$ as an integral linear combination of a and b.
Proposition (Bèzout's Lemma). For all $a, b \in \mathbb{Z}$ with $(a, b) \neq(0,0)$, there are $s, t \in \mathbb{Z}$ with

$$
\operatorname{gcd}(a, b)=a s+b t
$$

Idea of Proof. Apply Euclid's Algorithm and then use back-substitution.
Proposition. Let $a, m \in \mathbb{Z}$ with $m>0$. Integer a is a unit modulo m if and only if $\operatorname{gcd}(a, m)=1$.
Proof. Let $a, m \in \mathbb{Z}$ with $m>0$ be arbitrary.
(\Longrightarrow) : Assume a is a unit modulo m. Thus there is an $s \in \mathbb{Z}$ such that $a s \equiv 1(\bmod m)$. Now by a previous proposition there is a $t \in \mathbb{Z}$ such that $a s+m t=1$. Thus every common divisor of a and m divides 1 by elementary properties of divisibility. Hence $\operatorname{gcd}(a, m)=1$ as the only positive divisor of 1 is 1 .
(\Longleftarrow) : Assume $\operatorname{gcd}(a, m)=1$. Thus by Bèzout's Lemma there are $s, t \in \mathbb{Z}$ with as $+m t=1$. Thus $a s \equiv 1(\bmod m)$ by a previous proposition. Hence a is a unit modulo m by definition.

We conclude the original statement is true.

