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Proposition (Division Algorithm). Let n, d ∈ Z with d ∈ Z+. Then there exists a unique pair q, r ∈ Z
satisfying both n = dq + r and 0 ≤ r ≤ d− 1.

In n = dq+r, we d is the dividend or modulus, q is the quotient, and r is the remainder. This proposition
is better called the Quotient-Remainder Theorem.

Example 1. For n = 7 and d = 3 we have 7 = n = dq + r = 3 · 2 + 1.

Definition. Given modulus d ∈ Z+, for any a, b ∈ Z. We say a is equivalent to b modulo d when a and b
have the same remainder under division by d. We write a ≡ b (mod 3)

Example 2. We have the following reductions modulo 3.

−3 = 3 · (−1) + 0 ≡ 0 (mod 3) 0 = 3 · 0 + 0 ≡ 0 (mod 3)

−2 = 3 · (−1) + 1 ≡ 1 (mod 3) 1 = 3 · 0 + 1 ≡ 1 (mod 3)

−1 = 3 · (−1) + 2 ≡ 2 (mod 3) 2 = 3 · 0 + 2 ≡ 2 (mod 3)

Proposition. Let a, b ∈ Z and m ∈ Z+. The following are equivalent.

1. We have a ≡ b (mod m).

2. Both a and b have the same remainder modulo m.

3. We have m | (a− b).

4. We have a = mk + b for some k ∈ Z.

Proof. Let a, b ∈ Z and m ∈ Z+.
(1 ⇐⇒ 2): This is the definition of a ≡ b (mod m).
(2 =⇒ 3): Assume a and b have the same remainder modulo m. Applying the Division Algorithm we

obtain a = mq1 + r and b = mq2 + r for some q1, q2, r ∈ Z with 0 ≤ r ≤ m− 1. Now

a− b = (mq1 + r)− (mq2 + r) = (mq1 −mq2) + (r − r) = m(q1 − q2),

and q1 − q2 ∈ Z by closure of Z under subtraction. Hence m | (a− b) by definition.
(3 =⇒ 4): Assume m | (a− b). By definition of divisibility there is a k ∈ Z s.t. a− b = mk. Adding b

to both sides we obtain a = (a− b) + b = mk + b.
(4 =⇒ 1): Suppose a = mk + b for some k ∈ Z. Note b = mq + r for some q, r ∈ Z with 0 ≤ r ≤ m− 1

by the Division Algorithm. Now a = mk + b = mk + (mq + r) = m(k + q) + r; noting k + q ∈ Z by closure
and 0 ≤ r ≤ m − 1, we have r is the remainder of a modulo m by the uniqueness of remainders. Hence a
and b have the same remainder modulo m.

Proposition. Let a, b, c, d ∈ Z and m ∈ Z+. If a ≡ c (mod m) and b ≡ d (mod m), then

1. ab ≡ cd (mod m), and

2. a + b ≡ c + d (mod m).
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Proof. Let a, b, c, d ∈ Z and m ∈ Z+ satisfy a ≡ c (mod m) and b ≡ d (mod m). By the previous proposition,
there are integers k1, k2 ∈ Z such that a = mk1 + c and b = mk2 + d.

Part 1 : Taking the product we obtain

ab = (mk1 + c)(mk2 + d) = mk1mk2 + cmk2 + mk1d + cd = m(k1mk2 + ck2 + k1d) + cd.

Moreover, k1mk2+ck2+k1d ∈ Z by closure properties of Z. Hence ab ≡ cd (mod m) by previous proposition.
Part 2 : Taking the sum we obtain

a + b = (mk1 + c) + (mk2 + d) = m(k1 + k2) + (c + d).

Moreover k1 + k2 ∈ Z by closure properties of Z. Hence a + b ≡ c + d (mod m) by previous proposition.
We conclude the original statement is true.

We obtain a new arithmetic system for each m ∈ Z+ as follows. Define the class of integer a modulo m
as mZ + a := {mq + a : q ∈ Z}. When m is fixed in context, we sometimes write [a] = mZ + a. The set of
classes modulo m is denoted

Z/mZ := {mZ + a : a ∈ Z} = {mZ + r : 0 ≤ r ≤ m− 1, r ∈ Z} .

Indeed, the class of an integer is equal to the class of its remainder. This is because a = mq + r by the
Division Algorithm and thus a ≡ r (mod m) by our proposition above.

The operations modulo m are [a] · [b] = [ab] and [a] + [b] = [a+ b]. Previous proposition yields that these
operation are “well-defined”, i.e. independent of choice of representatives.

Example 3. We make operation tables for Z/6Z below.

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

· 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

Note that in Z/6Z we have [2] · [3] = [2 · 3] = [6] = [0]. Such elements a, b ∈ Z/mZ with a 6= [0] 6= b are
called nontrivial zero divisors in Z/mZ. To better understand multiplication modulo m, we must understand
zero-divisors. Obviously every divisor d | m with d /∈ {±1,±m} yields a nontrivial zero-divisor of Z/mZ;
indeed m = dk for some k ∈ Z yields [d] · [k] = [dk] = [m] = [0], and the assumption d /∈ {1,m} yields
1 < |k| < |m|, so [d] 6= [0] 6= [k]. Dual to zero divisors are units; an a ∈ Z is a unit modulo m ∈ Z+ when
there is an s ∈ Z such that as ≡ 1 (mod m).

Example 4. We see 1 and 5 are the only units modulo 6 by examining the multiplication table.

We next study the greatest common divisor in order to obtain a characterization of units modulo m.

Definition. The greatest common divisor of integers a, b ∈ Z, denoted gcd(a, b), is the largest integer which
divides both a and b.

Remark. Note that gcd(0, 0) is ill-defined because every integer divides 0. Otherwise max(|a|, |b|) is an
upper bound for gcd(a, b).

Example 5. We compute gcd(18, 26) using the definition below.

gcd(18, 26) = max {n ∈ Z : n | 18 and n | 26}
= max({n ∈ Z : n | 18} ∩ {n ∈ Z : n | 26})
= max({±1,±2,±3,±6,±9,±18} ∩ {±1,±2,±13,±26})
= max{±1,±2}
= 2
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Remark. This method of computing gcd(a, b) by trial divisions is inefficient. There’s a better way!

Algorithm (Euclid’s Algorithm). Let a, b ∈ Z such that (a, b) 6= (0, 0).

1. Let n0 := max(|a|, |b|) and d0 := min(|a|, |b|).

2. While di 6= 0:

(a) Apply the Division Algorithm to obtain ni = diqi + ri for some qi, ri ∈ Z with 0 ≤ ri < di.

(b) Set ni+1 := di and di+1 := ri, increment i, and continue.

3. Output nk (i.e. the last value of n).

Example 6. We compute gcd(18, 26) via Euclid’s Algorithm.

n0 := 26, d0 := 18  26 = 18 · 1 + 8

n1 := 18, d0 := 8  18 = 8 · 2 + 2

n2 := 8, d0 := 2  8 = 2 · 4 + 0

n3 := 2, d0 := 0  gcd(18, 26) = 2.

Our next example illustrates the method of back substitution to obtain a nice expression for the gcd.

Example 7. We compute gcd(5, 8) via Euclid’s Algorithm.

8 = 5 · 1 + 3  3 = 8− 5 · 1
5 = 3 · 1 + 2  5 = 5− 3 · 1
3 = 2 · 1 + 1  1 = 3− 2 · 1
2 = 1 · 2 + 0  gcd(5, 8) = 1

On the other hand, using the right column of the above table we have the following.

gcd(5, 8) = 1 = 3 · 1− 2 · 1
= 3 · 1− (5− 3 · 1) · 1 = 3 · 2− 5 · 1
= (8− 5 · 1) · 2− 5 · 1 = 8 · 2 + 5 · (−3)

Applying back substitution as above, we express gcd(a, b) as an integral linear combination of a and b.

Proposition (Bèzout’s Lemma). For all a, b ∈ Z with (a, b) 6= (0, 0), there are s, t ∈ Z with

gcd(a, b) = as + bt.

Idea of Proof. Apply Euclid’s Algorithm and then use back-substitution.

Proposition. Let a,m ∈ Z with m > 0. Integer a is a unit modulo m if and only if gcd(a,m) = 1.

Proof. Let a,m ∈ Z with m > 0 be arbitrary.
(=⇒): Assume a is a unit modulo m. Thus there is an s ∈ Z such that as ≡ 1 (mod m). Now by a

previous proposition there is a t ∈ Z such that as+mt = 1. Thus every common divisor of a and m divides
1 by elementary properties of divisibility. Hence gcd(a,m) = 1 as the only positive divisor of 1 is 1.

(⇐=): Assume gcd(a,m) = 1. Thus by Bèzout’s Lemma there are s, t ∈ Z with as + mt = 1. Thus
as ≡ 1 (mod m) by a previous proposition. Hence a is a unit modulo m by definition.

We conclude the original statement is true.
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