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Proposition (Division Algorithm). Let n,d € Z with d € Z*. Then there exists a unique pair q,r € 7
satisfying bothn =dqg+7 and 0 <r <d—1.

In n = dg+r, we d is the dividend or modulus, q is the quotient, and r is the remainder. This proposition
is better called the Quotient-Remainder Theorem.

Example 1. Forn=7and d=3wehave T=n=dq+r=3-2+ 1.

Definition. Given modulus d € ZT, for any a,b € Z. We say a is equivalent to b modulo d when a and b
have the same remainder under division by d. We write a = b (mod 3)

Example 2. We have the following reductions modulo 3.

-3=3-(-1)4+0=0 (mod 3) 0=3-0+0=0 (mod 3)
—2=3-(-1)41=1 (mod 3) 1=3-0+41=1 (mod 3)
-1=3-(-1)+2=2 (mod 3) 2=3-0+2=2 (mod 3)

Proposition. Let a,b € Z and m € Z+. The following are equivalent.
1. We have a = b (mod m).
2. Both a and b have the same remainder modulo m.
3. We have m | (a —b).
4. We have a = mk + b for some k € Z.

Proof. Let a,b € Z and m € Z™.

(1 < 2): This is the definition of a = b (mod m).

(2 = 3): Assume a and b have the same remainder modulo m. Applying the Division Algorithm we
obtain a = mqy +r and b = mgs + r for some ¢q,q2,7 € Z with 0 <r <m — 1. Now

a—0b=(mq +r)—(mg+7)=(mq —mg) + (r—r) =m(q1 — q2),

and g1 — g2 € Z by closure of Z under subtraction. Hence m | (a — b) by definition.

(3 = 4): Assume m | (a — b). By definition of divisibility there is a k € Z s.t. a — b = mk. Adding b
to both sides we obtain a = (a — b) + b = mk + b.

(4 = 1): Suppose a = mk + b for some k € Z. Note b = mq + r for some ¢,r € Z with 0 <r <m —1
by the Division Algorithm. Now a = mk + b = mk + (mq + r) = m(k + q) + r; noting k + ¢ € Z by closure
and 0 < r < m — 1, we have r is the remainder of ¢ modulo m by the uniqueness of remainders. Hence a
and b have the same remainder modulo m. O

Proposition. Let a,b,c,d € Z and m € Z*. If a = ¢ (mod m) and b =d (mod m), then
1. ab=cd (mod m), and

2. a+b=c+d (modm).
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Proof. Let a,b,c,d € Z and m € Z* satisfy a = ¢ (mod m) and b = d (mod m). By the previous proposition,
there are integers ki, ko € Z such that a = mky + c and b = mky + d.
Part 1: Taking the product we obtain

ab = (mky + ¢)(mky + d) = mkymks + emks + mkid + c¢d = m(kymks + cks + k1d) + cd.

Moreover, kymks+cka+ki1d € Z by closure properties of Z. Hence ab = c¢d (mod m) by previous proposition.
Part 2: Taking the sum we obtain

a+b=(mky +c)+ (mka +d) = m(ki + k) + (c + d).

Moreover ky + ko € Z by closure properties of Z. Hence a + b = ¢+ d (mod m) by previous proposition.
We conclude the original statement is true. O

We obtain a new arithmetic system for each m € Z* as follows. Define the class of integer @ modulo m
as mZ+ a = {mq+a:q€Z}. When m is fixed in context, we sometimes write [a] = mZ + a. The set of
classes modulo m is denoted

Z/mZ ={mZ+a:a€Z}={mZ+r:0<r<m-1, reZ}.

Indeed, the class of an integer is equal to the class of its remainder. This is because a = mgq + r by the
Division Algorithm and thus a = r (mod m) by our proposition above.

The operations modulo m are [a] - [b] = [ab] and [a] + [b] = [a + b]. Previous proposition yields that these
operation are “well-defined”, i.e. independent of choice of representatives.

Example 3. We make operation tables for Z/6Z below.

+10 1 2 3 4 5 <101 2 3 4 5
0/0 1 2 3 4 5 0/0 0 OO 0 O
171 2 3 4 5 0 110 1 2 3 4 5
212 3 45 01 210 2 4 0 2 4
313 4 5 01 2 30 3 0 3 0 3
414 5 0 1 2 3 410 4 2 0 4 2
515 0 1 2 3 4 510 5 4 3 2 1

Note that in Z/6Z we have [2] - [3] = [2- 3] = [6] = [0]. Such elements a,b € Z/mZ with a # [0] # b are
called nontrivial zero divisors in Z/mZ. To better understand multiplication modulo m, we must understand
zero-divisors. Obviously every divisor d | m with d ¢ {£1,+m} yields a nontrivial zero-divisor of Z/mZ;
indeed m = dk for some k € Z yields [d] - [k] = [dk] = [m] = [0], and the assumption d ¢ {1,m} yields
1 < |k| < |ml|, so [d] # [0] # [k]. Dual to zero divisors are units; an a € Z is a unit modulo m € Z* when
there is an s € Z such that as =1 (mod m).

Example 4. We see 1 and 5 are the only units modulo 6 by examining the multiplication table.
We next study the greatest common divisor in order to obtain a characterization of units modulo m.

Definition. The greatest common divisor of integers a,b € Z, denoted ged(a, b), is the largest integer which
divides both a and b.

Remark. Note that ged(0,0) is ill-defined because every integer divides 0. Otherwise max(|al,|b|) is an
upper bound for ged(a, b).

Example 5. We compute ged(18,26) using the definition below.

ged(18,26) = max{n € Z:n | 18 and n | 26}

max({n € Z:n |18} N{n € Z:n| 26})

= max({£1,£2, £3, £6, £9, £18} N {1, £2, +13, £26})
= max{+1, £2}

=2
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Remark. This method of computing ged(a, b) by trial divisions is inefficient. There’s a better way!
Algorithm (Euclid’s Algorithm). Let a,b € Z such that (a,b) # (0,0).

1. Let ng :== max(Jal,|b|) and dp := min(]al, |b])-

2. While d; # 0:

(a) Apply the Division Algorithm to obtain n; = d;q; + r; for some ¢;,r; € Z with 0 <r; < d;.

(b) Set n;y1 :=d; and d;1q := r;, increment 4, and continue.
3. Output ny (i.e. the last value of n).

Example 6. We compute ged(18,26) via Euclid’s Algorithm.

ng = 26, do =18 ~s 26=18-1+8
ny = 18, do =8 ~ 18=8-2+42
ng =8, dog =2 ~ 8§=2-440
ng = 2, do:=0 s ged(18,26) = 2.

Our next example illustrates the method of back substitution to obtain a nice expression for the ged.

Example 7. We compute ged(5,8) via Euclid’s Algorithm.

8=5-1+3 ~ 3=8-5-1
5=3-1+2 - B=5-3-1
3=2-1+1 - 1=3-2-1
2=1-240 ~ ged(5,8) =1

On the other hand, using the right column of the above table we have the following.

ged(5,8) =1=3-1-2-1
=3-1-(5-3-1)-1=3-2-5-1
=(8-5-1)-2-5-1=8-245-(-3)

Applying back substitution as above, we express ged(a, b) as an integral linear combination of a and b.
Proposition (Bézout’s Lemma). For all a,b € Z with (a,b) # (0,0), there are s,t € Z with
ged(a,b) = as + bt.
Idea of Proof. Apply Euclid’s Algorithm and then use back-substitution. O
Proposition. Let a,m € Z with m > 0. Integer a is a unit modulo m if and only if ged(a,m) = 1.

Proof. Let a,m € Z with m > 0 be arbitrary.

(=): Assume a is a unit modulo m. Thus there is an s € Z such that as = 1 (mod m). Now by a
previous proposition there is a t € Z such that as +mt = 1. Thus every common divisor of a and m divides
1 by elementary properties of divisibility. Hence ged(a,m) = 1 as the only positive divisor of 1 is 1.

(<=): Assume gcd(a,m) = 1. Thus by Beézout’s Lemma there are s,¢t € Z with as + m¢t = 1. Thus
as =1 (mod m) by a previous proposition. Hence a is a unit modulo m by definition.

We conclude the original statement is true. O
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