Notes on Modular Arithmetic

Scribe: Diantha Gardener Lecturer/Editor: Chris Eppolito

10 February 2020

Proposition (Division Algorithm). Let $n, d \in \mathbb{Z}$ with $d \in \mathbb{Z}^+$. Then there exists a unique pair $q, r \in \mathbb{Z}$ satisfying both n = dq + r and $0 \le r \le d - 1$.

In n = dq + r, we d is the dividend or modulus, q is the quotient, and r is the remainder. This proposition is better called the Quotient-Remainder Theorem.

Example 1. For n = 7 and d = 3 we have $7 = n = dq + r = 3 \cdot 2 + 1$.

Definition. Given modulus $d \in \mathbb{Z}^+$, for any $a, b \in \mathbb{Z}$. We say a is equivalent to b modulo d when a and b have the same remainder under division by d. We write $a \equiv b \pmod{3}$

Example 2. We have the following reductions modulo 3.

$-3 = 3 \cdot (-1) + 0 \equiv 0$	$\pmod{3}$	$0 = 3 \cdot 0 + 0 \equiv 0$	$\pmod{3}$
$-2 = 3 \cdot (-1) + 1 \equiv 1$	$\pmod{3}$	$1=3\cdot 0+1\equiv 1$	$\pmod{3}$
$-1 = 3 \cdot (-1) + 2 \equiv 2$	$\pmod{3}$	$2 = 3 \cdot 0 + 2 \equiv 2$	$\pmod{3}$

Proposition. Let $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$. The following are equivalent.

- 1. We have $a \equiv b \pmod{m}$.
- 2. Both a and b have the same remainder modulo m.
- 3. We have $m \mid (a b)$.
- 4. We have a = mk + b for some $k \in \mathbb{Z}$.

Proof. Let $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$.

 $(1 \iff 2)$: This is the definition of $a \equiv b \pmod{m}$.

 $(2 \implies 3)$: Assume a and b have the same remainder modulo m. Applying the Division Algorithm we obtain $a = mq_1 + r$ and $b = mq_2 + r$ for some $q_1, q_2, r \in \mathbb{Z}$ with $0 \le r \le m - 1$. Now

$$a - b = (mq_1 + r) - (mq_2 + r) = (mq_1 - mq_2) + (r - r) = m(q_1 - q_2)$$

and $q_1 - q_2 \in \mathbb{Z}$ by closure of \mathbb{Z} under subtraction. Hence $m \mid (a - b)$ by definition.

 $(3 \implies 4)$: Assume $m \mid (a - b)$. By definition of divisibility there is a $k \in \mathbb{Z}$ s.t. a - b = mk. Adding b to both sides we obtain a = (a - b) + b = mk + b.

 $(4 \implies 1)$: Suppose a = mk + b for some $k \in \mathbb{Z}$. Note b = mq + r for some $q, r \in \mathbb{Z}$ with $0 \le r \le m - 1$ by the Division Algorithm. Now a = mk + b = mk + (mq + r) = m(k + q) + r; noting $k + q \in \mathbb{Z}$ by closure and $0 \le r \le m - 1$, we have r is the remainder of a modulo m by the uniqueness of remainders. Hence a and b have the same remainder modulo m.

Proposition. Let $a, b, c, d \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$. If $a \equiv c \pmod{m}$ and $b \equiv d \pmod{m}$, then

- 1. $ab \equiv cd \pmod{m}$, and
- 2. $a + b \equiv c + d \pmod{m}$.

Proof. Let $a, b, c, d \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$ satisfy $a \equiv c \pmod{m}$ and $b \equiv d \pmod{m}$. By the previous proposition, there are integers $k_1, k_2 \in \mathbb{Z}$ such that $a = mk_1 + c$ and $b = mk_2 + d$.

Part 1: Taking the product we obtain

$$ab = (mk_1 + c)(mk_2 + d) = mk_1mk_2 + cmk_2 + mk_1d + cd = m(k_1mk_2 + ck_2 + k_1d) + cd.$$

Moreover, $k_1mk_2 + ck_2 + k_1d \in \mathbb{Z}$ by closure properties of \mathbb{Z} . Hence $ab \equiv cd \pmod{m}$ by previous proposition. Part 2: Taking the sum we obtain

$$a + b = (mk_1 + c) + (mk_2 + d) = m(k_1 + k_2) + (c + d).$$

Moreover $k_1 + k_2 \in \mathbb{Z}$ by closure properties of \mathbb{Z} . Hence $a + b \equiv c + d \pmod{m}$ by previous proposition. We conclude the original statement is true.

We obtain a new arithmetic system for each $m \in \mathbb{Z}^+$ as follows. Define the *class* of integer *a* modulo *m* as $m\mathbb{Z} + a := \{mq + a : q \in \mathbb{Z}\}$. When *m* is fixed in context, we sometimes write $[a] = m\mathbb{Z} + a$. The set of classes modulo *m* is denoted

$$\mathbb{Z}/m\mathbb{Z} \coloneqq \{m\mathbb{Z} + a : a \in \mathbb{Z}\} = \{m\mathbb{Z} + r : 0 \le r \le m - 1, r \in \mathbb{Z}\}.$$

Indeed, the class of an integer is equal to the class of its remainder. This is because a = mq + r by the Division Algorithm and thus $a \equiv r \pmod{m}$ by our proposition above.

The operations modulo m are $[a] \cdot [b] = [ab]$ and [a] + [b] = [a+b]. Previous proposition yields that these operation are "well-defined", i.e. independent of choice of representatives.

Example 3. We make operation tables for $\mathbb{Z}/6\mathbb{Z}$ below.

+	0	1	2	3	4	5	•	0	1	2	3	4	5
0	0	1	2	3	4	5	0	0	0	0	0	0	0
1	1	2	3	4	5	0	1	0	1	2	3	4	5
2	2	3	4	5	0	1	2	0	2	4	0	2	4
3	3	4	5	0	1	2	3	0	3	0	3	0	3
4	4	5	0	1	2	3	4	0	4	2	0	4	2
5	5	0	1	2	3	4	5	0	5	4	3	2	1

Note that in $\mathbb{Z}/6\mathbb{Z}$ we have $[2] \cdot [3] = [2 \cdot 3] = [6] = [0]$. Such elements $a, b \in \mathbb{Z}/m\mathbb{Z}$ with $a \neq [0] \neq b$ are called *nontrivial zero divisors* in $\mathbb{Z}/m\mathbb{Z}$. To better understand multiplication modulo m, we must understand zero-divisors. Obviously every divisor $d \mid m$ with $d \notin \{\pm 1, \pm m\}$ yields a nontrivial zero-divisor of $\mathbb{Z}/m\mathbb{Z}$; indeed m = dk for some $k \in \mathbb{Z}$ yields $[d] \cdot [k] = [dk] = [m] = [0]$, and the assumption $d \notin \{1, m\}$ yields 1 < |k| < |m|, so $[d] \neq [0] \neq [k]$. Dual to zero divisors are units; an $a \in \mathbb{Z}$ is a *unit* modulo $m \in \mathbb{Z}^+$ when there is an $s \in \mathbb{Z}$ such that $as \equiv 1 \pmod{m}$.

Example 4. We see 1 and 5 are the only units modulo 6 by examining the multiplication table.

We next study the greatest common divisor in order to obtain a characterization of units modulo m.

Definition. The greatest common divisor of integers $a, b \in \mathbb{Z}$, denoted gcd(a, b), is the largest integer which divides both a and b.

Remark. Note that gcd(0,0) is ill-defined because every integer divides 0. Otherwise max(|a|, |b|) is an upper bound for gcd(a, b).

Example 5. We compute gcd(18, 26) using the definition below.

$$gcd(18, 26) = \max \{ n \in \mathbb{Z} : n \mid 18 \text{ and } n \mid 26 \}$$

= max({ $n \in \mathbb{Z} : n \mid 18 \} \cap \{ n \in \mathbb{Z} : n \mid 26 \}$)
= max({ $\pm 1, \pm 2, \pm 3, \pm 6, \pm 9, \pm 18 \} \cap \{ \pm 1, \pm 2, \pm 13, \pm 26 \}$)
= max{ $\pm 1, \pm 2$ }
= 2

Remark. This method of computing gcd(a, b) by trial divisions is inefficient. There's a better way!

Algorithm (Euclid's Algorithm). Let $a, b \in \mathbb{Z}$ such that $(a, b) \neq (0, 0)$.

- 1. Let $n_0 \coloneqq \max(|a|, |b|)$ and $d_0 \coloneqq \min(|a|, |b|)$.
- 2. While $d_i \neq 0$:
 - (a) Apply the Division Algorithm to obtain $n_i = d_i q_i + r_i$ for some $q_i, r_i \in \mathbb{Z}$ with $0 \le r_i < d_i$.
 - (b) Set $n_{i+1} \coloneqq d_i$ and $d_{i+1} \coloneqq r_i$, increment *i*, and continue.
- 3. Output n_k (i.e. the last value of n).

Example 6. We compute gcd(18, 26) via Euclid's Algorithm.

$n_0 \coloneqq 26,$	$d_0 \coloneqq 18$	$\sim \rightarrow$	$26 = 18 \cdot 1 + 8$
$n_1 \coloneqq 18,$	$d_0 \coloneqq 8$	$\sim \rightarrow$	$18 = 8 \cdot 2 + 2$
$n_2 \coloneqq 8,$	$d_0 \coloneqq 2$	$\sim \rightarrow$	$8 = 2 \cdot 4 + 0$
$n_3 \coloneqq 2,$	$d_0 \coloneqq 0$	$\sim \rightarrow$	gcd(18, 26) = 2.

Our next example illustrates the method of *back substitution* to obtain a nice expression for the gcd. **Example 7.** We compute gcd(5,8) via Euclid's Algorithm.

$8 = 5 \cdot 1 + 3$	$\sim \rightarrow$	$3 = 8 - 5 \cdot 1$
$5 = 3 \cdot 1 + 2$	$\sim \rightarrow$	$5 = 5 - 3 \cdot 1$
$3 = 2 \cdot 1 + 1$	$\sim \rightarrow$	$1 = 3 - 2 \cdot 1$
$2 = 1 \cdot 2 + 0$	$\sim \rightarrow$	$\gcd(5,8) = 1$

On the other hand, using the right column of the above table we have the following.

$$gcd(5,8) = 1 = 3 \cdot 1 - 2 \cdot 1$$

= 3 \cdot 1 - (5 - 3 \cdot 1) \cdot 1 = 3 \cdot 2 - 5 \cdot 1
= (8 - 5 \cdot 1) \cdot 2 - 5 \cdot 1 = 8 \cdot 2 + 5 \cdot (-3)

Applying back substitution as above, we express gcd(a, b) as an integral linear combination of a and b.

Proposition (Bèzout's Lemma). For all $a, b \in \mathbb{Z}$ with $(a, b) \neq (0, 0)$, there are $s, t \in \mathbb{Z}$ with

$$gcd(a,b) = as + bt.$$

Idea of Proof. Apply Euclid's Algorithm and then use back-substitution.

Proposition. Let $a, m \in \mathbb{Z}$ with m > 0. Integer a is a unit modulo m if and only if gcd(a, m) = 1.

Proof. Let $a, m \in \mathbb{Z}$ with m > 0 be arbitrary.

 (\Longrightarrow) : Assume a is a unit modulo m. Thus there is an $s \in \mathbb{Z}$ such that $as \equiv 1 \pmod{m}$. Now by a previous proposition there is a $t \in \mathbb{Z}$ such that as + mt = 1. Thus every common divisor of a and m divides 1 by elementary properties of divisibility. Hence gcd(a, m) = 1 as the only positive divisor of 1 is 1.

(\Leftarrow): Assume gcd(a, m) = 1. Thus by Bèzout's Lemma there are $s, t \in \mathbb{Z}$ with as + mt = 1. Thus $as \equiv 1 \pmod{m}$ by a previous proposition. Hence a is a unit modulo m by definition.

We conclude the original statement is true.