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Today we will study the Fibonacci numbers.

Definition. The Fibonacci numbers are defined by f0 = 0, f1 = 1, and fn = fn−2 + fn−1 for all n ≥ 2.

Proposition. For all n ∈ N we have
∑n
k=0 fk = fn+2 − 1.

Proof. Let n ∈ N be arbitrary and proceed by induction on n to prove P (n) :
∑n
k=0 fk = fn+2 − 1.

Base Case: For n = 0 we have f0+2 − 1 = f2 − 1 = 1 − 1 = 0 and
∑0
k=0 fk = f0 = 0. Thus∑0

k=0 fk = 0 = f0+2 − 1 as desired.

Inductive Step: Let j ∈ N be arbitrary and assume
∑j
k=0 fk = fj+2 − 1. We compute

j+1∑
k=0

fk =

j∑
k=0

fk + fj+1 = (fj+2 − 1) + fj+1 = fj+2 + fj+1 − 1 = f(j+1)+2 − 1.

Therefore
∑j+1
k=0 fk = f(j+1)+2 − 1 and the inductive step holds.

Hence the original statement is true by mathematical induction.

Proposition. Let (an)n≥0 be a real sequence. If an = an−1 + an−2 for all n ≥ 2, then for all k ∈ N we have

an+1 = fn+1a1 + fna0.

Proof. We proceed by strong induction. Suppose (an)n≥0 is a sequence of numbers satisfying an = an−1 +
an−2 for all n ≥ 2

Base Case: Note for n = 1 and n = 2 we have the following, verifying our base cases.

a1 = 1 · a1 + 0 · a0 = f1a1 + f0a0

a2 = a1 + a0 = 1 · a1 + 1 · a0 = f2a1 + f1a0

Inductive Step: Let n ≥ 2 and suppose ak = fka1 + fk−aa0 for all 1 ≥ k ≥ n. We now compute

an+1 = an + an−a

= fna1 + fn−1a0 + fn−1a1 + fn−2a0

= (fn + fn−1)a1 + (fn−1 + fn−2)a0

= fn+1a1 + fna0.

Hence an+1 = fn+1a1 + fna0, and the inductive step holds.
We conclude the original statement is true by mathematical induction.

Corollary. For all α, β ∈ N we have fα+β+1 = fα+1fβ+1 + fαfβ.

Proof. We apply the previous proposition to the shifted Fibonacci sequence, an = fα+n for all n ∈ N. Note
an = fα+n = fα+(n+1) + fα(n−2) = an−1 + an−2 for all n ≥ 2. Hence we obtain

fα+β+1 = aβ+1 = fβ+1a1 + fβ+1a0 = fβ+1fα+1 + fβfα.
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Corollary. Let n, d ∈ N. If d | n, then fd | fn.

Proof. Let d ∈ N be arbitrary. Note that if d = 0, then d | n implies n = 0. Thus the statement trivially
holds (f0 | f0). Otherwise, we assume d 6= 0 and we proceed by strong induction on n.

Base Case: If n = 0, then trivially d | 0; moreover, fn = f0 = 0 · fd, so fd | fn in this case, and the
statement holds.

Inductive Step: Assume that d | k implies fd | fk for all 0 ≥ k ≥ n; further suppose d | n. By definition
of divisibility there is an integer m ∈ Z such that n = dm. Thus we rewrite n = dm = (d− 1) + d(m− 1) + 1
Applying the previous corollary, we obtain

fn = fdm = f(d−1)+d(m−1)+1 = f(d−1)+1fd(m−1)+1 + fd−1fd(m+1) = fdfd(m−1)+1 + fd(m+1)fd−1.

Now d(m − 1) < dm = n, so by the induction hypothesis fd | fd(m−1) and thus there is an l ∈ Z such that
fd(m−1) = fdl by definition of divisibility. Hence we have

fn = fdfd(m−1)+1 + fd(m+1)fd−1 = fdfd(m−1)+1 + (fdl)fd−1 = fd(fd(m−1)+1 + fd−1l).

By closure properties of integers, fd(m−1)+1 + fd−1l ∈ Z. Hence fd | fn and the inductive step holds.
We conclude the original statement is true.
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