Notes on Fibonacci Numbers

Scribe: Sarah Beaver Lecturer/Editor: Chris Eppolito

2 March 2020

Today we will study the Fibonacci numbers.
Definition. The Fibonacci numbers are defined by $f_{0}=0, f_{1}=1$, and $f_{n}=f_{n-2}+f_{n-1}$ for all $n \geq 2$.
Proposition. For all $n \in \mathbb{N}$ we have $\sum_{k=0}^{n} f_{k}=f_{n+2}-1$.
Proof. Let $n \in \mathbb{N}$ be arbitrary and proceed by induction on n to prove $P(n): \sum_{k=0}^{n} f_{k}=f_{n+2}-1$.
Base Case: For $n=0$ we have $f_{0+2}-1=f_{2}-1=1-1=0$ and $\sum_{k=0}^{0} f_{k}=f_{0}=0$. Thus $\sum_{k=0}^{0} f_{k}=0=f_{0+2}-1$ as desired.

Inductive Step: Let $j \in \mathbb{N}$ be arbitrary and assume $\sum_{k=0}^{j} f_{k}=f_{j+2}-1$. We compute

$$
\sum_{k=0}^{j+1} f_{k}=\sum_{k=0}^{j} f_{k}+f_{j+1}=\left(f_{j+2}-1\right)+f_{j+1}=f_{j+2}+f_{j+1}-1=f_{(j+1)+2}-1
$$

Therefore $\sum_{k=0}^{j+1} f_{k}=f_{(j+1)+2}-1$ and the inductive step holds.
Hence the original statement is true by mathematical induction.
Proposition. Let $\left(a_{n}\right)_{n \geq 0}$ be a real sequence. If $a_{n}=a_{n-1}+a_{n-2}$ for all $n \geq 2$, then for all $k \in \mathbb{N}$ we have

$$
a_{n+1}=f_{n+1} a_{1}+f_{n} a_{0} .
$$

Proof. We proceed by strong induction. Suppose $\left(a_{n}\right)_{n \geq 0}$ is a sequence of numbers satisfying $a_{n}=a_{n-1}+$ a_{n-2} for all $n \geq 2$

Base Case: Note for $n=1$ and $n=2$ we have the following, verifying our base cases.

$$
\begin{aligned}
& a_{1}=1 \cdot a_{1}+0 \cdot a_{0}=f_{1} a_{1}+f_{0} a_{0} \\
& a_{2}=a_{1}+a_{0}=1 \cdot a_{1}+1 \cdot a_{0}=f_{2} a_{1}+f_{1} a_{0}
\end{aligned}
$$

Inductive Step: Let $n \geq 2$ and suppose $a_{k}=f_{k} a_{1}+f_{k-a} a_{0}$ for all $1 \geq k \geq n$. We now compute

$$
\begin{aligned}
a_{n+1} & =a_{n}+a_{n-a} \\
& =f_{n} a_{1}+f_{n-1} a_{0}+f_{n-1} a_{1}+f_{n-2} a_{0} \\
& =\left(f_{n}+f_{n-1}\right) a_{1}+\left(f_{n-1}+f_{n-2}\right) a_{0} \\
& =f_{n+1} a_{1}+f_{n} a_{0} .
\end{aligned}
$$

Hence $a_{n+1}=f_{n+1} a_{1}+f_{n} a_{0}$, and the inductive step holds.
We conclude the original statement is true by mathematical induction.
Corollary. For all $\alpha, \beta \in \mathbb{N}$ we have $f_{\alpha+\beta+1}=f_{\alpha+1} f_{\beta+1}+f_{\alpha} f_{\beta}$.
Proof. We apply the previous proposition to the shifted Fibonacci sequence, $a_{n}=f_{\alpha+n}$ for all $n \in \mathbb{N}$. Note $a_{n}=f_{\alpha+n}=f_{\alpha+(n+1)}+f_{\alpha(n-2)}=a_{n-1}+a_{n-2}$ for all $n \geq 2$. Hence we obtain

$$
f_{\alpha+\beta+1}=a_{\beta+1}=f_{\beta+1} a_{1}+f_{\beta+1} a_{0}=f_{\beta+1} f_{\alpha+1}+f_{\beta} f_{\alpha}
$$

Corollary. Let $n, d \in \mathbb{N}$. If $d \mid n$, then $f_{d} \mid f_{n}$.
Proof. Let $d \in \mathbb{N}$ be arbitrary. Note that if $d=0$, then $d \mid n$ implies $n=0$. Thus the statement trivially holds $\left(f_{0} \mid f_{0}\right)$. Otherwise, we assume $d \neq 0$ and we proceed by strong induction on n.

Base Case: If $n=0$, then trivially $d \mid 0$; moreover, $f_{n}=f_{0}=0 \cdot f_{d}$, so $f_{d} \mid f_{n}$ in this case, and the statement holds.

Inductive Step: Assume that $d \mid k$ implies $f_{d} \mid f_{k}$ for all $0 \geq k \geq n$; further suppose $d \mid n$. By definition of divisibility there is an integer $m \in \mathbb{Z}$ such that $n=d m$. Thus we rewrite $n=d m=(d-1)+d(m-1)+1$ Applying the previous corollary, we obtain

$$
f_{n}=f_{d m}=f_{(d-1)+d(m-1)+1}=f_{(d-1)+1} f_{d(m-1)+1}+f_{d-1} f_{d(m+1)}=f_{d} f_{d(m-1)+1}+f_{d(m+1)} f_{d-1} .
$$

Now $d(m-1)<d m=n$, so by the induction hypothesis $f_{d} \mid f_{d(m-1)}$ and thus there is an $l \in \mathbb{Z}$ such that $f_{d(m-1)}=f_{d} l$ by definition of divisibility. Hence we have

$$
f_{n}=f_{d} f_{d(m-1)+1}+f_{d(m+1)} f_{d-1}=f_{d} f_{d(m-1)+1}+\left(f_{d} l\right) f_{d-1}=f_{d}\left(f_{d(m-1)+1}+f_{d-1} l\right) .
$$

By closure properties of integers, $f_{d(m-1)+1}+f_{d-1} l \in \mathbb{Z}$. Hence $f_{d} \mid f_{n}$ and the inductive step holds.
We conclude the original statement is true.

