Notes on Binomial Coefficients

Scribe: Mark Tettey Lecturer/Editor: Chris Eppolito

9 March 2020 and 11 March 2020

Definition. Let $k, n \in \mathbb{N}$ with $k \leq n$. The binomial coefficient $\binom{n}{k}=\#\{S \subseteq[n]: \# S=k\}$.
The notation $\binom{n}{k}$ is read as " n choose k ".
Proposition. For all $n, k \in \mathbb{N}$ with $k \leq n$ we have $2^{n}=\sum_{k=0}^{n}\binom{n}{k}$.
Proof. Consider the power set pow $([n])$. We have pow $([n])=\bigsqcup_{k=0}^{n}\{S \subset[n]: \# S=k\}$ which is disjoint union because $S=T$ implies $\# S=\# T$. Therefore by the Sum Principle

$$
\begin{equation*}
2^{n}=\# \operatorname{pow}([n])=\sum_{k=0}^{n} \#\{S \subset[n]: \# S=k\}=\sum_{k=0}^{n}\binom{n}{k} . \tag{18}
\end{equation*}
$$

Proposition (Pascal's Identity). For all $n, k \in \mathbb{N}$ with $1 \leq k \leq n$, we have $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$.
Proof. Let $n, k \in N$ with $1 \leq k \leq n$, consider the set $X=\{S \subset[n]: \# S=k\}$. Note that every member $S \in X$ satisfies either $n \in S$ or $n \notin S$. Thus we may express

$$
\begin{aligned}
X & =\{S \subseteq[n]: \# S=k\} \\
& =\{S \subseteq[n]: \# S=k \text { and } n \in S\} \sqcup\{S \subseteq[n]: \# S=k \text { and } n \notin S\} \\
& =\{T \cup\{n\}: \#(T \cup\{n\})=k \text { and } T \subseteq[n-1]\} \sqcup\{S \subseteq[n-1]: \# S=k\} .
\end{aligned}
$$

Now note that the pairing $T \longleftrightarrow T \cup\{n\}$ for each $T \subset[n-1]$ with $\# T=k-1$ is a one-to-one correspondence of the sets $\{T \subseteq[n-1]: \# T=k-1\}$ and $\{T \cup\{n\}: T \subseteq[n-1]$ and $\# T=k-1\}$. Hence we apply the Sum Principle and Correspondence Principle to complete the proof by computing

$$
\begin{align*}
\# X & =\#\{T \cup\{n\}: T \subset[n-1] \text { and } \# T=k-1\}+\#\{S \subset[n-1]: \# S=k\} \\
& =\#\{T \subset[n-1]: \# T=k-1\}+\#\{S \subset[n-1]: \# S=k\} \\
& =\binom{n-1}{k-1}+\binom{n-1}{k} .
\end{align*}
$$

Proposition. For all $k, n \in \mathbb{N}$ with $k \leq n$ we have $\binom{n}{k}=\binom{n}{n-k}$.
Proof. Let $k, n \in \mathbb{N}$ with $k \subseteq[n]$ and define $X=\{S \subset[n]: \# S=k\}$ and $Y=\{S \subset[n]: \# S=n-k\}$. Pair elements of X and Y by the rule $S \longleftrightarrow[n] \backslash S$ for all $S \in X$. Note that $[n] \backslash S=[n] \backslash T$ yields $S=[n] \backslash([n] \backslash S)=[n] \backslash([n] \backslash T)=T$, so every element of X is paired to exactly one element of Y and vice versa. Hence the Correspondence Principle yields $\binom{n}{k}=\# X=\# Y=\binom{n}{n-k}$.

Our next order of business is to obtain an algebraic description of the binomial coefficients.
Definition. Let S be a set and $r \in \mathbb{N}$. An r-permutation of S is an r-tuple $\left(s_{1}, s_{2}, \ldots, s_{r}\right)$ with $s_{i} \in S$ for all $i \in[r]$ and $s_{i}=s_{j}$ implies $i=j$. We also call $(\# S)$-permutations of S just permutations of S.
Example 1. Below we write all the r-permutations of $S=[3]$ for $r \in\{0,1,2,3\}$.

r	r-permutations of [3]					
0	()	(2)	(3)			
1	(1)	$(1,3)$	$(2,1)$	$(2,3)$	$(3,1)$	$(3,2)$
2	$(1,2)$	$(2,3)$	$(2,3,1)$	$(3,1,2)$	$(3,2,1)$	

Proposition. Let $r, n \in \mathbb{N}$ with $r \leq n$. Every set of size n has precisely $\frac{n!}{(n-r)!} r$-permutations.
To prove this proposition, we will first prove a special case.
Lemma. Let $n \in \mathbb{N}$. Every n-set has precisely n ! permutations.
Proof of Lemma. We proceed by induction on n.
Base Case: There is a unique 0-permutation, namely (). Hence there are $1=0$! permutations of \emptyset.
Induction Step: Assume every $(n-1)$-set has exactly $(n-1)$! permutations. Let S be an arbitrary set of size n. Choose any $s \in S$, and note that $S \backslash\{s\}$ is an $(n-1)$-set. There are $(n-1)$! permutations of $S \backslash\{s\}$ by the induction hypothesis. Now given a permutation $\sigma=\left(s_{1}, s_{2}, \ldots, s_{n-1}\right)$ of $S \backslash\{s\}$, we build a permutation of S by placing s somewhere in σ. There are ($n-1$)! options for σ and n positions in which to place s. Hence the Product Principle yields $n(n-1)!=n$! permutations of S.

We conclude the original statement is true by weak mathematical induction.
Proof of Proposition. Let $r, n \in \mathbb{N}$ with $r \leq n$. Let α denote the number of r-permutations of $[n]$. Note that every n-permutation of $[n]$ is determined by choosing an r-permutation of $[n]$ and then a permutation of the remaining elements. Hence $n!=\alpha(n-r)$! by the product principle. Solving for α we obtain $\alpha=\frac{n!}{(n-r)!}$.

Proposition. For all $k, n \in \mathbb{N}$ with $k \leq n$ we have $\binom{n}{k}=\frac{n!}{k!(n-k)!}$.
Proof. Let $k, n \in \mathbb{N}$ with $k \leq n$. Every k-permutation of n is obtained by choosing a k-subset $T \subseteq[n]$, and then choosing a permutation of T. Hence $\frac{n!}{(n-k)!}=\binom{n}{k} \cdot k$!, so solving for $\binom{n}{k}=\frac{n!}{k!(n-k)!}$.
Remark. Arguments of this type are called "counting in two ways" because they prove an equality by enumerating the elements of a single set via two different procedures.

We finish this discussion noting that the name "binomial coefficient" comes from the following theorem.
Proposition (Binomial Theorem). Let $x, y \in \mathbb{R}$. For all $n \in \mathbb{N}$ we have $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$.
Proof. Let $x, y \in \mathbb{R}$ be arbitrary. We proceed by induction on n.
Base Case: We have $(x+y)^{0}=1=\binom{0}{0} x^{0} y^{0}=\sum_{k=0}^{0}\binom{0}{k} x^{k} y^{0-k}$, verifying the base case.
Induction Step: If $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$ for some $n \in \mathbb{N}$, we apply Pascal's Identity to compute

$$
\begin{aligned}
(x+y)^{n+1} & =(y+x)(x+y)^{n}=(x+y) \sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k+1}+\sum_{k=0}^{n}\binom{n}{k} x^{k+1} y^{n-k} \\
& =\left[\binom{n}{0} x^{0} y^{n+1}+\sum_{k=1}^{n}\binom{n}{k} x^{k} y^{(n+1)-k}\right]+\left[\sum_{k=1}^{n}\binom{n}{k-1} x^{k} y^{(n+1)-k}+\binom{n}{n} x^{n+1} y^{0}\right] \\
& =\binom{n+1}{0} x^{0} y^{n+1}+\sum_{k=1}^{n}\left[\binom{n+1)-1}{k}+\binom{n+1)-1}{k-1}\right]+\binom{n+1}{n+1} x^{n+1} y^{0} \\
& =\sum_{k=0}^{n+1}\binom{n+1}{k} x^{k} y^{(n+1)-k} .
\end{aligned}
$$

We conclude the original statement is true by weak mathematical induction.
Note that many properties of binomial coefficients follow directly from the binomial theorem. For example

$$
2^{n}=(1+1)^{n}=\sum_{k=0}^{n}\binom{n}{k} 1^{k} 1^{n-k}=\sum_{k=0}^{n}\binom{n}{k}
$$

recovering a result we proved earlier. This also allows us to prove purely algebraically many properties of binomial coefficients which are difficult by enumeration-style proofs. For example, for all $n \in \mathbb{Z}^{+}$we have

$$
0=((-1)+1)^{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} 1^{n-k}=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}
$$

which is rather difficult to prove by enumeration for even $n \in \mathbb{N}$.

