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Definition. Let k, n ∈ N with k ≤ n. The binomial coefficient
(
n
k

)
= # {S ⊆ [n] : #S = k}.

The notation
(
n
k

)
is read as “n choose k”.

Proposition. For all n, k ∈ N with k ≤ n we have 2n =
∑n

k=0

(
n
k

)
.

Proof. Consider the power set pow([n]). We have pow([n]) =
⊔n

k=0 {S ⊂ [n] : #S = k} which is disjoint
union because S = T implies #S = #T . Therefore by the Sum Principle

2n = # pow([n]) =

n∑
k=0

# {S ⊂ [n] : #S = k} =

n∑
k=0

(
n

k

)
.

Proposition (Pascal’s Identity). For all n, k ∈ N with 1 ≤ k ≤ n, we have
(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
.

Proof. Let n, k ∈ N with 1 ≤ k ≤ n, consider the set X = {S ⊂ [n] : #S = k}. Note that every member
S ∈ X satisfies either n ∈ S or n /∈ S. Thus we may express

X = {S ⊆ [n] : #S = k}
= {S ⊆ [n] : #S = k and n ∈ S} t {S ⊆ [n] : #S = k and n /∈ S}
= {T ∪ {n} : #(T ∪ {n}) = k and T ⊆ [n− 1]} t {S ⊆ [n− 1] : #S = k} .

Now note that the pairing T ←→ T ∪{n} for each T ⊂ [n−1] with #T = k−1 is a one-to-one correspondence
of the sets {T ⊆ [n− 1] : #T = k − 1} and {T ∪ {n} : T ⊆ [n− 1] and #T = k − 1}. Hence we apply the
Sum Principle and Correspondence Principle to complete the proof by computing

#X = # {T ∪ {n} : T ⊂ [n− 1] and #T = k − 1}+ # {S ⊂ [n− 1] : #S = k}
= # {T ⊂ [n− 1] : #T = k − 1}+ # {S ⊂ [n− 1] : #S = k}

=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

Proposition. For all k, n ∈ N with k ≤ n we have
(
n
k

)
=
(

n
n−k

)
.

Proof. Let k, n ∈ N with k ⊆ [n] and define X = {S ⊂ [n] : #S = k} and Y = {S ⊂ [n] : #S = n− k}.
Pair elements of X and Y by the rule S ←→ [n] \ S for all S ∈ X. Note that [n] \ S = [n] \ T yields
S = [n] \ ([n] \ S) = [n] \ ([n] \ T ) = T , so every element of X is paired to exactly one element of Y and vice

versa. Hence the Correspondence Principle yields
(
n
k

)
= #X = #Y =

(
n

n−k

)
.

Our next order of business is to obtain an algebraic description of the binomial coefficients.

Definition. Let S be a set and r ∈ N. An r-permutation of S is an r-tuple (s1, s2, . . . , sr) with si ∈ S for
all i ∈ [r] and si = sj implies i = j. We also call (#S)-permutations of S just permutations of S.

Example 1. Below we write all the r-permutations of S = [3] for r ∈ {0, 1, 2, 3}.

r r-permutations of [3]
0
1
2
3

()
(1) (2) (3)

(1, 2) (1, 3) (2, 1) (2, 3) (3, 1) (3, 2)
(1, 2, 3) (1, 3, 2) (2, 1, 3) (2, 3, 1) (3, 1, 2) (3, 2, 1)
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Proposition. Let r, n ∈ N with r ≤ n. Every set of size n has precisely n!
(n−r)! r-permutations.

To prove this proposition, we will first prove a special case.

Lemma. Let n ∈ N. Every n-set has precisely n! permutations.

Proof of Lemma. We proceed by induction on n.
Base Case: There is a unique 0-permutation, namely (). Hence there are 1 = 0! permutations of ∅.
Induction Step: Assume every (n − 1)-set has exactly (n − 1)! permutations. Let S be an arbitrary set

of size n. Choose any s ∈ S, and note that S \ {s} is an (n − 1)-set. There are (n − 1)! permutations of
S \ {s} by the induction hypothesis. Now given a permutation σ = (s1, s2, . . . , sn−1) of S \ {s}, we build a
permutation of S by placing s somewhere in σ. There are (n− 1)! options for σ and n positions in which to
place s. Hence the Product Principle yields n(n− 1)! = n! permutations of S.

We conclude the original statement is true by weak mathematical induction.

Proof of Proposition. Let r, n ∈ N with r ≤ n. Let α denote the number of r-permutations of [n]. Note that
every n-permutation of [n] is determined by choosing an r-permutation of [n] and then a permutation of the

remaining elements. Hence n! = α(n−r)! by the product principle. Solving for α we obtain α = n!
(n−r)! .

Proposition. For all k, n ∈ N with k ≤ n we have
(
n
k

)
= n!

k! (n−k)! .

Proof. Let k, n ∈ N with k ≤ n. Every k-permutation of n is obtained by choosing a k-subset T ⊆ [n], and

then choosing a permutation of T . Hence n!
(n−k)! =

(
n
k

)
· k!, so solving for

(
n
k

)
= n!

k! (n−k)! .

Remark. Arguments of this type are called “counting in two ways” because they prove an equality by
enumerating the elements of a single set via two different procedures.

We finish this discussion noting that the name “binomial coefficient” comes from the following theorem.

Proposition (Binomial Theorem). Let x, y ∈ R. For all n ∈ N we have (x+ y)
n

=
∑n

k=0

(
n
k

)
xkyn−k.

Proof. Let x, y ∈ R be arbitrary. We proceed by induction on n.
Base Case: We have (x+ y)

0
= 1 =

(
0
0

)
x0y0 =

∑0
k=0

(
0
k

)
xky0−k, verifying the base case.

Induction Step: If (x+ y)
n

=
∑n

k=0

(
n
k

)
xkyn−k for some n ∈ N, we apply Pascal’s Identity to compute

(x+ y)
n+1

= (y + x)(x+ y)
n

= (x+ y)

n∑
k=0

(
n

k

)
xkyn−k =

n∑
k=0

(
n

k

)
xkyn−k+1 +

n∑
k=0

(
n

k

)
xk+1yn−k

=

[(
n

0

)
x0yn+1 +

n∑
k=1

(
n

k

)
xky(n+1)−k

]
+

[
n∑

k=1

(
n

k − 1

)
xky(n+1)−k +

(
n

n

)
xn+1y0

]

=

(
n+ 1

0

)
x0yn+1 +

n∑
k=1

[(
(n+ 1)− 1

k

)
+

(
(n+ 1)− 1

k − 1

)]
+

(
n+ 1

n+ 1

)
xn+1y0

=

n+1∑
k=0

(
n+ 1

k

)
xky(n+1)−k.

We conclude the original statement is true by weak mathematical induction.

Note that many properties of binomial coefficients follow directly from the binomial theorem. For example

2n = (1 + 1)
n

=

n∑
k=0

(
n

k

)
1k1n−k =

n∑
k=0

(
n

k

)
,

recovering a result we proved earlier. This also allows us to prove purely algebraically many properties of
binomial coefficients which are difficult by enumeration-style proofs. For example, for all n ∈ Z+ we have

0 = ((−1) + 1)
n

=

n∑
k=0

(
n

k

)
(−1)

k
1n−k =

n∑
k=0

(−1)
k

(
n

k

)
,

which is rather difficult to prove by enumeration for even n ∈ N.
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