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Definition. Let k,n € N with k& < n. The binomial coefficient (}}) = #{S C [n] : #5 = k}.
The notation (}) is read as “n choose k.
Proposition. For alln,k € N with k <n we have 2" =>"}'_, (Z)

Proof. Consider the power set pow([n]). We have pow([n]) = | |}_,{S C [n]: #S = k} which is disjoint
union because S = T implies #S = #T. Therefore by the Sum Principle

2 = e pow(al) = S5 s w5 =) =3 () %
k=0

k=0

Proposition (Pascal’s Identity). For all n,k € N with 1 < k < n, we have (Z) = (Zj) + (”;1)

Proof. Let n,k € N with 1 < k < n, consider the set X = {S C [n]: #5 = k}. Note that every member
S € X satisfies either n € S or n ¢ S. Thus we may express
X={SCn]:#S =k}
={SCn:#S=kandneS}U{SCn|:#S=kandn ¢ S}
={TU{n}:#T U{n})=kand T C[n—-1}uU{SC[n—1]: #S=k}.
Now note that the pairing T' +— TU{n} for each T' C [n—1] with #T = k—1 is a one-to-one correspondence
of the sets {T C[n—1]: #T =k —1} and {TU{n}:T C[n—1] and #T =k — 1}. Hence we apply the
Sum Principle and Correspondence Principle to complete the proof by computing
#X =#{TU{n}:TCn—1and #T =k -1} +#{SC[n—1]: #S =k}
—H T Cn—1]:#T =k -1} +#{SC[n—1]: #5 =k}
n—1 n—1
= . \*
) ()
Proposition. For all k,n € N with k < n we have (Z) = (nfk)
Proof. Let k,n € N with &k C [n] and define X = {SCn|: #S=k} and Y = {SC[n]: #S=n—k}.
Pair elements of X and Y by the rule S «— [n]\ S for all S € X. Note that [n] \ S = [n] \ T yields

S =M\ (n]\S) =[]\ ([n]\T) =T, so every element of X is paired to exactly one element of ¥ and vice
versa. Hence the Correspondence Principle yields (Z) =#X =#Y = (nfk) S

Our next order of business is to obtain an algebraic description of the binomial coefficients.

Definition. Let S be a set and r € N. An r-permutation of S is an r-tuple (s1, s2,...,s,) with s; € S for
all i € [r] and s; = s; implies i = j. We also call (#S)-permutations of S just permutations of S.

Example 1. Below we write all the r-permutations of S = [3] for r € {0, 1,2, 3}.

T r-permutations of [3]

0 0

1 (1) (2) (3)

2 (1,2) (1,3) (2,1) (2,3) (3,1) (3,2)
3 (L,23) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)

—_
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Proposition. Let r,n € N with r < n. FEvery set of size n has precisely #‘T), r-permutations.
To prove this proposition, we will first prove a special case.
Lemma. Let n € N. Every n-set has precisely n! permutations.

Proof of Lemma. We proceed by induction on n.

Base Case: There is a unique 0-permutation, namely (). Hence there are 1 = 0! permutations of §.

Induction Step: Assume every (n — 1)-set has exactly (n — 1)! permutations. Let S be an arbitrary set
of size n. Choose any s € S, and note that S\ {s} is an (n — 1)-set. There are (n — 1)! permutations of
S\ {s} by the induction hypothesis. Now given a permutation o = (s1,82,...,8,-1) of S\ {s}, we build a
permutation of S by placing s somewhere in o. There are (n — 1)! options for o and n positions in which to
place s. Hence the Product Principle yields n(n — 1)! = n! permutations of S.

We conclude the original statement is true by weak mathematical induction. %

Proof of Proposition. Let r,n € N with » < n. Let o denote the number of r-permutations of [n]. Note that
every n-permutation of [n] is determined by choosing an r-permutation of [n] and then a permutation of the
remaining elements. Hence n! = a(n —1r)! by the product principle. Solving for « we obtain o = (n”'r), %

n!

Proposition. For all k,n € N with k < n we have (Z) = Monm

Proof. Let k,n € N with k < n. Every k-permutation of n is obtained by choosing a k-subset T' C [n], and
then choosing a permutation of 7. Hence (nfi'k), = (}) - k!, so solving for (}) = #’_k), %

Remark. Arguments of this type are called “counting in two ways” because they prove an equality by
enumerating the elements of a single set via two different procedures.

We finish this discussion noting that the name “binomial coefficient” comes from the following theorem.

Proposition (Binomial Theorem). Let z,y € R. For alln € N we have (z +y)" =Y, _, (7)z*y"~".

Proof. Let x,y € R be arbitrary We proceed by induction on n.
Base Case: We have (x +y) =1= ( )x y = Ek o ( ) ky0=F verifying the base case.

Induction Step: 1If (z + y)" Zk 0 ( ) k for some n 6 N, we apply Pascal’s Identity to compute
n+l _ n __ k,n—k k n k+1 k+1 n k
(49" =y+2)(r+y) —(m+y)’§(k>wy ;(k) +Z<)

_ - n nt1)— n\ ,
l( K n+l+z( I R o (R BV E S (g B yl
k=1

(ngl) O"+1+Z[(n+;)l)+ n+1) 1)]+(2E)x"“y0

n+1
_ (" + 1) kg (D) —k
k 4 ‘

k=0

We conclude the original statement is true by weak mathematical induction. S
Note that many properties of binomial coefficients follow directly from the binomial theorem. For example

2" = (1+1)" = i: (Z)mn—’f = Zn: (Z)

k=0 k=0

recovering a result we proved earlier. This also allows us to prove purely algebraically many properties of
binomial coefficients which are difficult by enumeration-style proofs. For example, for all n € Z* we have

0=(-D+1)"= Z (Z) (=D = Z (=1* (Z)

k=0 k=0

which is rather difficult to prove by enumeration for even n € N.
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