## Notes on Graph Connection

Scribe: Ally Waring Lecturer/Editor: Chris Eppolito

3 April 2020

**Definition.** A *graph* is a structure having vertices and edges, where we allow loops and parallel edges. **Remark.** For general graphs, we do allow the following configurations.



Sometimes we will distinguish between edges with the same endpoints; we do so by labeling the edges. Example 1. We will use the following graph as a running example in the notes below.



**Definition.** A walk in G is a sequence  $(v_0, e_1, v_1, e_2, v_2, \dots, v_{n-1}, e_n, v_n)$  where  $v_i \in V(G)$  for  $0 \le i \le n$  and  $e_i$  is an edge of G with ends  $v_{i-1}$  and  $v_i$  for all  $i \in [n]$ .

**Example 2.** The sequence W = (1, a, 2, b, 2, c, 3, h, 4, i, 5, g, 3, g, 5, f, 6) is a walk in the graph of Example 1.



The walk W is highlighted in blue; its start is circled in green and its end is circled in red.

**Definition.** A *closed walk* in G is a walk which starts and ends at the same vertex. We say a closed walk is *based at* its first vertex.

**Example 3.** The walk W = (7, k, 5, f, 6, e, 1, d, 3, h, 4, i, 5, j, 7) in the graph of Example 1 is a closed walk.



The walk from Example 2 is not a closed walk as its start and end vertices are distinct.

**Definition.** The connection relation on graph G is the relation  $\sim$  on V(G) defined by  $u \sim v$  when there is a walk in G connecting u to v.

**Proposition.** Given a graph G, the connection relation is an equivalence relation on V(G).

*Proof.* Let G be an arbitrary graph and let  $\sim$  denote the connection relation on G.

Reflexive: Let  $v \in V(G)$  by arbitrary. Notice that (v) is a walk from v to v in G. Hence  $v \sim v$ .

Symmetry: Let  $u, v \in V(G)$  satisfy  $u \sim v$ . There is a walk  $(u = x_0, e_1, x_1, \ldots, x_n = v)$  in G by definition of  $\sim$ . Reverse this walk to obtain another walk  $(v = x_n, e_{n-1}, x_{n-1}, \ldots, x_1, e_1, x_0 = u)$  in G. As this is a walk in G from v to u. Hence  $v \sim u$ .

Transitivity: Let  $u, v, w \in V(G)$  satisfy  $u \sim v$  and  $v \sim w$ . There are walks  $u = (x_0, e_1, x_1, \ldots, x_n = v)$ and  $v = (y_0, f_1, y_1, \ldots, y_m = w)$  in G by definition of  $\sim$ . Concatenating these walks, we obtain a new walk  $u = (x_0, e_1, x_1, \ldots, x_n = v = y_0, f_1, y_1, \ldots, y_m = w)$  connecting u to w. Hence  $u \sim w$ .

Hence  $\sim$  is an equivalence relation, as desired.