Notes on Subgraphs

Scribe: William Cornejo Lecturer/Editor: Chris Eppolito

1 April 2020

Definition. Let G be a graph. A subgraph of G is a graph H such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. We write $H \leq G$ to denote H is a subgraph of G.

Example 1. The graphs G and H defined below satisfy $H \leq G$.

$$
G=(\{a, b, c, d, e, f, g\},\{a b, b c, b f, c d, c e, c f, d e, e f, f g\}), \quad \text { and } \quad H=(\{a, b, c, d, f\},\{a b, b c, b f, c d\})
$$

Indeed, we depict G and H below, with H highlighted in orange.

We worked together as a class to solve the following problem regarding subgraphs.
Problem 1. How many subgraphs does K_{n} have?
For $n=2$ we can list all of these fairly easily.

Let $\operatorname{pow}_{k}(T):=\{S \subseteq T: \# S=k\}$ and note $\# \operatorname{pow}_{k}(T)=\binom{\# T}{k}$ by definition of the binomial coefficients.
Solution. The set of subgraphs of K_{n} is precisely $S=\left\{(V, E): V \subseteq[n], E \subseteq \operatorname{pow}_{2}(V)\right\}$. We may write

$$
\begin{aligned}
S & =\left\{(V, E): V \subseteq[n], E \subseteq \operatorname{pow}_{2}(V)\right\} \\
& =\bigcup_{V \subseteq[n]}\left\{(V, E): E \subseteq \operatorname{pow}_{2}(V)\right\} \\
& =\bigcup_{k=0}^{n} \bigcup_{V \in \operatorname{pow}_{k}([n])}\left\{(V, E): E \subseteq \operatorname{pow}_{2}(V)\right\}
\end{aligned}
$$

As each of these unions is disjoint, we apply the Sum Principle to obtain the following.

$$
\begin{aligned}
\# S & =\# \bigcup_{k=0}^{n} \bigcup_{V \in \operatorname{pow}_{k}([n])}\left\{(V, E): E \subseteq \operatorname{pow}_{2}(V)\right\} \\
& =\sum_{k=0}^{n} \# \bigcup_{V \in \operatorname{pow}_{k}([n])}\left\{(V, E): E \subseteq \operatorname{pow}_{2}(V)\right\} \\
& =\sum_{k=0}^{n} \sum_{V \in \operatorname{pow}_{k}([n])} \#\left\{(V, E): E \subseteq \operatorname{pow}_{2}(V)\right\} \\
& =\sum_{k=0}^{n} \sum_{V \in \operatorname{pow}_{k}([n])} \# \operatorname{pow}\left(\operatorname{pow}_{2}(V)\right) \\
& =\sum_{k=0}^{n} \sum_{V \in \operatorname{pow}_{k}([n])} 2^{\# \operatorname{pow}_{2}(V)} \\
& =\sum_{k=0}^{n} \sum_{V \in \operatorname{pow}_{k}([n])} 2^{\left(\#_{2} V\right)} \\
& =\sum_{k=0}^{n} \sum_{V \in \operatorname{pow}_{k}([n])} 2^{\binom{k}{2}}=\sum_{k=0}^{n} \# \operatorname{pow}_{k}([n]) 2^{\binom{k}{2}}=\sum_{k=0}^{n}\binom{n}{k} 2^{\binom{k}{2}}
\end{aligned}
$$

Hence K_{n} has precisely $\sum_{k=0}^{n}\binom{n}{k} 2^{\binom{k}{2}}$ subgraphs.

