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Definition. Let G be a graph. A subgraph of G is a graph H such that V(H) C V(G) and E(H) C E(G).
We write H < G to denote H is a subgraph of G.

Example 1. The graphs G and H defined below satisfy H < G.
G = ({a,b,c,d,e, f,g},{ab,bec,bf,cd,ce,cf,de,ef, fg}), and H = ({a,b,c,d,f},{ab,bc,bf,cd})

Indeed, we depict G and H below, with H highlighted in

We worked together as a class to solve the following problem regarding subgraphs.
Problem 1. How many subgraphs does K,, have?
For n = 2 we can list all of these fairly easily.

] [ g
[ ] [ J [ J *——o
b K;

K o, K>

Let pow,(T) == {S C T : #S = k} and note # pow, (T) = (#kT) by definition of the binomial coefficients.
Solution. The set of subgraphs of K, is precisely S = {(V, E) : V C [n], E C pow,(V)}. We may write
S={(V.E):V C[n],E C powy(V)}

= |J {(V,BE): E C pow,(V)}
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As each of these unions is disjoint, we apply the Sum Principle to obtain the following.
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Hence K, has precisely > ;_, (2)2(5) subgraphs.
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