Notes on the Handshaking Lemma

Scribe: William Cornejo Lecturer/Editor: Chris Eppolito

1 April 2020

Recall the following example from the previous lecture.
Example 1. Consider the graph G given below; we compute the degrees of the vertices of G.

$$
\begin{array}{llll}
\operatorname{deg}_{G}\left(v_{1}\right)=1 & \operatorname{deg}_{G}\left(v_{2}\right)=3 & \operatorname{deg}_{G}\left(v_{3}\right)=4 & \operatorname{deg}_{G}\left(v_{4}\right)=2 \\
\operatorname{deg}_{G}\left(v_{5}\right)=3 & \operatorname{deg}_{G}\left(v_{6}\right)=4 & \operatorname{deg}_{G}\left(v_{7}\right)=1 &
\end{array}
$$

The above example has the sum of the degrees is twice the number of edges. This is true in general.
Proposition (Handshaking Lemma). For every graph G we have

$$
\sum_{v \in V(G)} \operatorname{deg}_{G}(v)=2 \cdot \# E(G)
$$

Proof. We count the set $S=\{(v, e) \in V(G) x E(G): v \in e\}$ in two ways.
Note $S=\bigcup_{v \in V(G)}\{(v, e) \in S: v \in e\}$, and this union is disjoint. Hence by the sum principle

$$
\# S=\# \bigcup_{v \in V(G)}\{(v, e) \in S: v \in e\}=\sum_{v \in V(G)} \#\{(v, e): e \in E(G), v \in e\}=\sum v \in V(G) \operatorname{deg}_{G}(v)
$$

On the other hand $S=\bigcup_{e \in E(G)}(v, e) \in S: v \in e$. Noting $\# e=2$ for all $e \in E(G)$ and that this union is disjoint. Applying the Sum Principle we obtain

$$
\# S=\# \bigcup_{e \in E(G)}\{(v, e) \in S: v \in e\}=\sum_{e \in E(G)} \#\{(v, e): v \in e\}=\sum_{e \in E(G)} 2=2 \cdot \# E(G)
$$

Hence we have $\sum_{v \subseteq V(G)} \operatorname{deg}_{G}(v)=\# S=2 \cdot \# E(G)$ as desired.

