Notes Introducing Simple Graphs

Scribe: Reece Pena Lecturer/Editor: Chris Eppolito

30 March 2020

Today we begin our study of simple graphs, a model for symmetric relationships between objects.

Definition. A simple graph is a pair G = (V(G), E(G)) of sets with $E(G) \subseteq \{S \subseteq V(G) : \#S = 2\}$. Elements of V(G) are vertices and elements of E(G) are edges.

For the next several classes we will study simple graphs; we omit the word "simple" for brevity.

We abbreviate $\{u, v\}$ to uv when there is no risk for confusion; note uv = vu with this convention. We often describe graphs via drawings where dots and line segments represent vertices and edges respectively.

Example 1. The graph $G = (\{a, b, c, d, e, f\}, \{af, bc, bd, bf, cd, cf\})$ is depicted below.

Note that there are many possible drawings of a given graph; it is important to note that the picture is a convenient shorthand for the graph, and the graph itself does not depend on a given drawing.

Let G be a graph with $u, v \in V(G)$ and $e \in E(G)$. We say...

- 1. *u* is adjacent to *v* when $uv \in E(G)$.
- 2. v is *incident* to e when $v \in e$.
- 3. u and v are the *ends* of e when e = uv.

Remark. In a simple graph, we see neither *loops* ("edges" of the form vv) nor *parallel edges* ("double edges" with the same pair of ends). Thus, our pictures won't have the following configurations.

Notes Introducing Simple Graphs

Example 2. The following are some important families of graphs.

1. The *empty graphs* are defined by $\Phi_n = ([n], \emptyset)$ for $n \in \mathbb{N}$.

 $\Phi_3 = \bullet \quad \bullet \quad \bullet$

2. The complete graphs are defined by $K_n = ([n], \{uv : u, v \in [n], u \neq v\})$ for $n \in \mathbb{N}$.

3. The path graphs are $P_n = (\{0\} \cup [n], \{\{i-1,i\} : i \in [n]\})$ for $n \in \mathbb{N}$).

$$P_4 = \bullet - \bullet - \bullet - \bullet$$

4. The cycle graphs $(forn \in \mathbb{N})$ are $C_n = (\{0\} \cup [n-1], \{\{0, n-1\}\} \cup \{\{i-1, i\} : i \in [n-1]\}).$

5. The Peterson graph P is depicted below.

Definition. Let G be a graph and $v \in V(G)$. The degree of v in G is $\deg_G(v) = \# \{e \in E(G) : v \text{ is incident to } e\}$. **Example 3.** Consider the graph G given below; we compute the degrees of the vertices of G.

$$\begin{split} \deg_G(v_1) &= 1 & \deg_G(v_2) &= 3 & \deg_G(v_3) &= 4 & \deg_G(v_4) &= 2 \\ \deg_G(v_5) &= 3 & \deg_G(v_6) &= 4 & \deg_G(v_7) &= 1 \end{split}$$