# Notes on Operations on Relations 

Scribe: Samuel Forker Lecturer/Editor: Chris Eppolito

27 March 2020

Recall. A relation from set $S$ to set $T$ is a subset $R \subseteq S \times T$.
Example 1. Consider $R$ from $\{2,3,5\}$ to $[20] \backslash[10]$ given by $x R y$ when $x \mid y$, in matrix notation below.

|  | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 3 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
| 5 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |

Recall. Let $R$ be a relation on $A$. Here are some important (possible!) properties of relations.

| Name | Property |
| :--- | :--- |
| Reflexivity | $\forall_{x \in A}[x R x]$ |
| Symmetry | $\forall_{x, y \in A}[x R y \rightarrow y R x]$ |
| Antisymmetry | $\forall_{x, y \in A}[(x R y \wedge y R x) \rightarrow x=y]$ |
| Transitivity | $\forall_{x, y, z \in A}[(x R y \wedge y R z) \rightarrow x R z]$ |

Definition. Let $R$ be a relation from set $A$ to $B$ and $Q$ be a relation from $A$ to $C$. The composition of $Q$ with $R$ is $Q \circ R$ is the relation $Q \circ R:=\{(a, c) \in A \times C$ : there is a $b \in B$ with $a R b$ and $b Q c\}$.

The composition relation concatenates arrows in the digraph representations.
Example 2. Let $A=\{a, b, c, d\}, B=\{f, g, h\}$, and $C=\{s, t, u\}$. For the relations

$$
R=\{(a, f),(a, h),(c, g),(d, h)\} \quad \text { and } \quad Q=\{(f, t),(h, s)\}
$$

we obtain composition $Q \circ R=\{(a, t),(a, s),(d, s)\}$. The digraph below illustrates the composition; arrows from $R$ are red, arrows from $Q$ are blue, and the arrows of the composition $Q \circ R$ are purple.


Proposition. Suppose $R$ is a relation on set $A$. The following are equivalent.

1. Relation $R$ is transitive.
2. The composition $R \circ R \subseteq R$.
3. The $n$-fold composition $R^{n}=\underbrace{R \circ R \circ R \circ \cdots \circ R}_{n \text { times }} \subseteq R$ for all $n \geq 1$.

A proof of this property is left as an exercise for students to check their understanding of transitivity. From relation $R$ on set $A$, we obtain the transitive closure $\operatorname{tra}(R):=\bigcup_{i=1}^{\infty} R^{n}$ of $R$.

Definition. Given any relation $R$ from $A$ to $B$, the inverse relation is $R^{-1}=\{(b, a) \in B \times A: a R b\}$.
The inverse relation reverses the arrows of the digraph representation (what does it do to the matrix?).
Proposition. $A$ relation $R$ on a set $A$ is symmetric if and only if $R^{-1} \subseteq R$.
A proof of this property is left as an exercise for students to check their understanding of symmetry. From relation $R$ on set $A$, we obtain the symmetric closure $\operatorname{sym}(R):=R \cup R^{-1}$ of $R$.

Example 3. Let $A$ be a set. The identity relation on $A$ is $\operatorname{id}_{A}:=\{(a, a): a \in A\}$.
Proposition. $A$ relation $R$ on $A$ is reflexive if and only if $\operatorname{id}_{A} \subseteq R$.
Again, this is left for students to check their understanding.
From relation $R$ on set $A$, we obtain the reflexive closure $\operatorname{ref}(R):=\operatorname{id}_{A} \cup R$ of $R$.
These three "closure operations" allow us to build an equivalence relation from any relation $R$ on $A$.
Proposition. Let $R$ be a relation on the set $A$. The relation $E(R)=\operatorname{ref}(\operatorname{tra}(\operatorname{sym}(R)))$ is an equivalence relation on $A$. Moreover, if $Q$ is an equivalence relation with $R \subseteq Q$, then $E(R) \subseteq Q$.

Thus $E(R)$ is the smallest equivalence relation on $A$ containing $R$.
Proof. Let $R$ be an arbitrary relation on $A$, and let $E=E(R)$ as above. Note $x E y$ if and only if either $x=y$ or there is an $n \in \mathbb{N}$ and a sequence $\left(x=a_{0}, a_{1}, \cdots, a_{n}=y\right)$ such that $\left(a_{i-1}, a_{i}\right) \in R \cup R^{-1}$ for all $i \in[n]$.

Reflexivity: By definition we have $\operatorname{id}_{A} \subseteq E$, so $E$ is reflexive.
Symmetry: Suppose $x E y$. If $x=y$, there is nothing to prove. Otherwise there is a sequence

$$
\left(x=w_{0}, w_{1}, w_{2}, \ldots, w_{n}=y\right)
$$

in $A$ such that for all $i \in[n]$ we have $\left(w_{i-1}, w_{i}\right) \in R \cup R^{-1}$. Thus $\left(y=w_{n}, w_{n-1}, \ldots, w_{0}=x\right)$ is a sequence in $A$ such that for all $i \in[n]$ we have $\left(w_{i}, w_{i-1}\right) \in R \cup R^{-1}$, so $y E x$. Hence $E$ is symmetric.

Transitivity: Suppose $x E y$ and $y E z$. If either $x=y$ or $y=z$, there is nothing to prove. Otherwise there are $m, n \in \mathbb{N}$ and sequences $\left(x=a_{0}, a_{1}, \ldots, a_{m}=y\right)$ and $\left(y=b_{0}, b_{1}, \ldots, b_{n}=z\right)$ with $\left(a_{i-1}, a_{i}\right) \in R \cup R^{-1}$ for all $i \in[m]$ and $\left(b_{j-1}, b_{j}\right) \in R \cup R^{-1}$ for all $j \in[n]$. Now concatenating these sequences, we obtain a sequence $\left(x=a_{0}, a_{1}, \ldots, a_{m}=y=b_{0}, b_{1}, \ldots, b_{n}=z\right)$; thus $x E z$. Hence $E$ is transitive.

Hence $E$ is an equivalence relation on $A$. Now suppose $Q$ is an equivalence relation on $A$ with $R \subseteq Q$. Note $\operatorname{id}_{A} \subseteq Q$ by reflexivity of $Q$, and $R^{-1} \subseteq Q^{-1} \subseteq Q$ by symmetry of $Q$. By transitivity of $Q$ we have

$$
\bigcup_{n=1}^{\infty}\left(R \cup R^{-1}\right) \subseteq \bigcup_{n=1}^{\infty} Q \subseteq Q
$$

Hence we have $E(R)=\operatorname{ref}(\operatorname{tra}(\operatorname{sym}(R)))=\operatorname{id}_{A} \cup \bigcup_{n=1}^{\infty}\left(R \cup R^{-1}\right) \subseteq Q$ as desired.

