Notes on Relations

Scribe: Charlie Bartoletti Lecturer/Editor: Chris Eppolito

23 March 2020

Definition. A relation from set S to set T is a subset $R \subseteq S \times T$.

We often say a relation R from A to A is a *relation on* A. Our examples below are written in "pairs notation". It's often cumbersome to write " $(a, b) \in R$ "; we often abbreviate this to aRb.

Example 1. The following are simple examples of relations.

- 1. Let $S = \{a, b, c, d, e, f\}$ and $T = \{r, s, t, u, v\}$. The set $R = \{(a, v), (a, t), (c, s), (d, s), (d, r), (e, u)\}$ is a relation from S to T.
- 2. Let $C = \{c : c \text{ is a US city}\}$ and $S = \{s : s \text{ is a US state}\}$. Then $R = \{(c, s) : \text{city } c \text{ is in state } s\}$ is a relation from C to S.
- 3. The divisibility relation on \mathbb{N} ; i.e. $R = \{(a, b) \in \mathbb{N} \times \mathbb{N} : a \mid b\}$.
- 4. Let P denote the set of people. The friends relation on P is $F := \{(a, b) \in P \times P : a \text{ is friends with } b\}$.
- 5. For all sets S and T, there is an empty relation $R = \emptyset$ and a complete relation $R = S \times T$ from S to T.

We want more efficient/enlightening representations; two useful notations are "matrix notation" and "digraph notation". The matrix notation associates an array M to the relation; the rows of M are associated to the elements of S, and the columns are associated to the elements of T. We place a 1 in the (s,t)-entry of M when $(s,t) \in R$, and a 0 otherwise. In digraph notation, we line up the elements of S and the elements of T separately (as dots), and draw an arrow from $s \to t$ when $(s,t) \in R$. Both of these notations offer a way to visualize the relation either more compactly (matrix) or with a mind to structure (digraph).

Example 2. Let $S = \{a, b, c, d, e, f\}$ and $T = \{r, s, t, u, v\}$, and consider the relation R from S to T below.

$$R = \{(a,v), (a,t), (c,s), (d,s), (d,r), (e,u)\}$$

This relation is expressed in the matrix and digraph notations below.

	r	s	t	u	v
a	0	0	1	0	1
b	0	0	0	0	0
c	0	1	0	0	0
d	1	1	0	0	0
e	0	0	0	1	0
f	0	0	0	0	0

Remark. We have the following.

- 1. The empty relation is represented by a matrix with all 0's, and a digraph with no arrows.
- 2. The complete relation is represented by a matrix with all 1's, and a digraph with all possible arrows.

- 3. If $S = \emptyset = T$, the only relation from S to T is the empty relation $R = \emptyset$. In this case, R is represented by the 0×0 matrix and the empty digraph.
- 4. If S and T are finite and R is a relation from S to T, then R has a matrix representation; the matrix representation does depend on the order in which you list S and T.

When R is a relation on set A, we can represent R as a digraph much more efficiently; rather than write out both sides, we create one dot for each element of A and draw an arrow just among these dots.

Example 3. Let $A = \{a, b, c, d\}$ and consider the relation below.

$$R = \{(a, b), (a, c), (a, d), (b, b), (b, d), (c, a)\}$$

We represent R in all three possible notations below.

Definition. Let A be a set and R a relation on A.

1. Relation R is *reflexive* when for all $x \in A$ we have xRx.

$$x \xrightarrow{\sim} x$$

2. Relation R is symmetric when for all $x, y \in A$ we have xRy implies yRx.

 $x \bullet \longrightarrow \bullet y \qquad \rightsquigarrow \qquad x \bullet \frown \to \bullet y$

3. Relation R is transitive when for all $x, y, z \in A$ we have xRy and yRz implies xRz.

$$y$$
 y y z $x \xrightarrow{f} z$

4. Relation R is antisymmetric when for all $x, y \in A$ we have xRy and yRx implies x = y.

 $x \bullet \longrightarrow \bullet y \qquad \rightsquigarrow \qquad x \bullet \frown \bullet y$

Problem 1. For the properties above, give a relation satisfying precisely the properties of each subset of the properties (or give a proof that no such relation exists).