Notes on Relations

Scribe: Charlie Bartoletti Lecturer/Editor: Chris Eppolito

23 March 2020

Definition. A relation from set S to set T is a subset $R \subseteq S \times T$.
We often say a relation R from A to A is a relation on A. Our examples below are written in "pairs notation". It's often cumbersome to write " $(a, b) \in R$ "; we often abbreviate this to $a R b$.

Example 1. The following are simple examples of relations.

1. Let $S=\{a, b, c, d, e, f\}$ and $T=\{r, s, t, u, v\}$. The set $R=\{(a, v),(a, t),(c, s),(d, s),(d, r),(e, u)\}$ is a relation from S to T.
2. Let $C=\{c: c$ is a US city $\}$ and $S=\{s: s$ is a US state $\}$. Then $R=\{(c, s):$ city c is in state $s\}$ is a relation from C to S.
3. The divisibility relation on \mathbb{N}; i.e. $R=\{(a, b) \in \mathbb{N} \times \mathbb{N}: a \mid b\}$.
4. Let P denote the set of people. The friends relation on P is $F:=\{(a, b) \in P \times P: a$ is friends with $b\}$.
5. For all sets S and T, there is an empty relation $R=\emptyset$ and a complete relation $R=S \times T$ from S to T.

We want more efficient/enlightening representations; two useful notations are "matrix notation" and "digraph notation". The matrix notation associates an array M to the relation; the rows of M are associated to the elements of S, and the columns are associated to the elements of T. We place a 1 in the (s, t)-entry of M when $(s, t) \in R$, and a 0 otherwise. In digraph notation, we line up the elements of S and the elements of T separately (as dots), and draw an arrow from $s \rightarrow t$ when $(s, t) \in R$. Both of these notations offer a way to visualize the relation either more compactly (matrix) or with a mind to structure (digraph).

Example 2. Let $S=\{a, b, c, d, e, f\}$ and $T=\{r, s, t, u, v\}$, and consider the relation R from S to T below.

$$
R=\{(a, v),(a, t),(c, s),(d, s),(d, r),(e, u)\}
$$

This relation is expressed in the matrix and digraph notations below.

	r	s	t	u	v
a	0	0	1	0	1
b	0	0	0	0	0
c	0	1	0	0	0
d	1	1	0	0	0
e	0	0	0	1	0
f	0	0	0	0	0

Remark. We have the following.

1. The empty relation is represented by a matrix with all 0 's, and a digraph with no arrows.
2. The complete relation is represented by a matrix with all 1's, and a digraph with all possible arrows.
3. If $S=\emptyset=T$, the only relation from S to T is the empty relation $R=\emptyset$. In this case, R is represented by the 0×0 matrix and the empty digraph.
4. If S and T are finite and R is a relation from S to T, then R has a matrix representation; the matrix representation does depend on the order in which you list S and T.

When R is a relation on set A, we can represent R as a digraph much more efficiently; rather than write out both sides, we create one dot for each element of A and draw an arrow just among these dots.

Example 3. Let $A=\{a, b, c, d\}$ and consider the relation below.

$$
R=\{(a, b),(a, c),(a, d),(b, b),(b, d),(c, a)\}
$$

We represent R in all three possible notations below.

	a	b	c	d
a	0	1	1	1
b	0	1	0	1
c	1	0	0	0
d	0	0	0	0

Definition. Let A be a set and R a relation on A.

1. Relation R is reflexive when for all $x \in A$ we have $x R x$.

2. Relation R is symmetric when for all $x, y \in A$ we have $x R y$ implies $y R x$.

3. Relation R is transitive when for all $x, y, z \in A$ we have $x R y$ and $y R z$ implies $x R z$.

4. Relation R is antisymmetric when for all $x, y \in A$ we have $x R y$ and $y R x$ implies $x=y$.

Problem 1. For the properties above, give a relation satisfying precisely the properties of each subset of the properties (or give a proof that no such relation exists).

