
Notes on Finite State Automata

Scribe: Colton Hart Lecturer/Editor: Chris Eppolito

29 April 2020

Recall that a finite state machine is a sextuple M = (S, I,O, t, w, s0) with...

1. a finite set S of states with a distinguished initial state s0 ∈ S,

2. finite sets I and O of input characters and output characters respectively,

3. a transition function t : S × I → S,

4. a write function w : S × I → O.

Machines allows both reading and writing. Our next model can answer inclusion questions about nice
sets of strings; rather than writing as we read, this model will allow us to output a single boolean value
(i.e. True or False) after applying the machine to an input string. First we recall some terminology.

Definition. A language is a set of strings or words in some finite alphabet.

Example 1. Consider the alphabet A = {0, 1}. The bit strings are the language L = A∗.
In the alphabet A of lowercase English letters, both abracadabra and xkcd are words in A∗. They are

not words in the language L = {x : x is an English word}.
For A = {0} ∪ [9], the set L = {x : x is a weakly increasing word in A} is a language in A.

The above example demonstrates that our languages can have a syntax, but not necessarily a semantics.
We now describe a theory of computation for recognizing strings of regular languages (a special class).

Definition. A (deterministic) finite state automaton is a quintuple M = (S, s0, F,A, t) with...

1. a finite set S of states with a distinguished initial state s0 and a set F ⊆ S of final or accepting states,

2. an input alphabet A,

3. a transition function t : S ×A→ S.

We often always abbreviate this as “automaton” (or pluralized as “automata”).

Remark. As before we draw diagraph pictures of our automata. Our conventions are the same as for state
machines except each arrow has one label, and the final states are double circled; to make our diagrams more
concise, we often give an arrow more than one label rather than produce multiple arrows.

Example 2. The following picture describes the same automation M = (S, s0, F,A, t) where S = a, b, c,
s0 = a, A = {0, 1}, F = {b}, and transition function t (given as a table below).

t 0 1
a c c
b b a
c a b

astart

b c

0, 1

0

1 0

1

Definition. An automation M = (S, s0, F,A, t) yields a function fM : A∗ → {True, False}, where fM (w) is
True if and only if reading w into M ends at a final state. A word w is accepted by M when fM (w) = True.

1



math314-01-s20 (Eppolito) Notes on Finite State Automata 29 April 2020

Thus every automaton M determines an accepted language LM = {w ∈ A∗
M : fM (w) = True}. Below we

exhibit many examples of automata and the languages they accept.

Example 3. The automata below accept all bit strings and the empty language (respectively).

astart 0, 1 astart 0, 1

Example 4. The automaton below has accepted language L = {w ∈ {0, 1}∗ : w ends with a 1}.

astart b

0

1

0

1

Example 5. We give an automaton which accepts only the bit string 001 below.

astart b c t

f

0

1

0

1

1

0
0, 1

0, 1

Example 6. We give an automaton that accepts any bit string with 11 as a substring below.

astart b c

0

1

0 1
0, 1

Example 7. The automaton below has LM = {w ∈ {0, 1}∗ : w has an even number of each symbol 0, 1}.

tstart a

b c

0

1

0

11

0

1

0

Example 8. The following automaton accepts bit strings with a substring 101.

astart b c t

0

1

1

0

0

1

0, 1

Given automata M and N with AM = AN , we can construct an automaton which accepts LM ∩ LN .

Proposition. Given automata M and N with A = AM = AN , there is an automaton M × N satisfying
LM×N = LM ∩ LN . In particular, M ×N is given by

M ×N = (SM × SN , (s0(M), s0(N)), FM × FN , A, tM×N ),

where tM×N ((m,n), a) = (tM (m, a), tN (n, a)) for all (m,n, a) ∈ SM × SN ×A.

Proof. Notice that M × N simulates M in its first component and N in its second component. Thus
w ∈ LM×N if and only if fM (w) = True = fN (w). Hence LM×N = LM ∩ LN as desired.

Page 2


