Notes on Finite State Machines

Scribe: Peter Orselli Lecturer/Editor: Chris Eppolito

27 April 2020

We want to mathematically analyze algorithms; we begin with a simple model of an algorithm, which allows both input and output.

Definition. A finite state machine is a sextuple $M=\left(S, I, O, t, w, s_{0}\right)$ with

1. a finite set S of states with a distinguished initial state $s_{0} \in S$,
2. finite sets I and O of input symbols and output symbols respectively,
3. a transition function $t: S \times I \rightarrow S$,
4. an output function $w: S \times I \rightarrow O$, and

We sometimes abbreviate the name "finite state machine" to "state machine" or simply " machine".
Remark. This way of describing a machine is verbose! We can more compactly express them as directed graphs with some decorations. We represent states by vertices; the initial state is marked by an unmarked arrow pointing in. The transition and output functions are represented with directed edges with labels.
Example 1. We describe a finite state machine $M=\left(S, I, O, t, w, s_{0}\right)$. Let $S=\{a, b, c\}, s_{0}=a$, and $I=\{0,1\}=O$. We define t and w in the table below.

	t		w	
	0	1	0	1
a	b	a	0	1
b	b	c	1	0
c	a	c	1	1

We may represent this finite state machine as a digraph, given below.

Before continuing, we give some additional terminology to facilitate our discussion.
Definition. An alphabet is a finite set of symbols. A word or string in an alphabet A is a finite sequence of symbols of A. The set of all words in A is denoted A^{*}.

The empty word, denoted ϵ, is the unique word of length 0 . A bit string is a word in $\{0,1\}$.
For the purposes of the following discussion, we write a state machine M with initial state s_{0} as a pair $\left(M, s_{0}\right) .{ }^{1}$ A machine $\left(M, s_{0}\right)$ defines a function $f_{\left(M, s_{0}\right)}: I^{*} \rightarrow O^{*}$ (recursively) as follows. We define $f_{\left(M, s_{0}\right)}(\epsilon)=\epsilon$, and $f_{\left(M, s_{0}\right)}\left(a_{1} a_{2} \ldots a_{k}\right)=w_{M}\left(s_{0}, a_{1}\right) f_{\left(M, t_{M}\left(w_{1}, s_{0}\right)\right)}\left(a_{2} \ldots a_{k}\right)$ where $a_{1}, a_{2}, \cdots, a_{k} \in I$. Using the digraph representation, computing $f_{M}(a)$ amounts to following arrows labeled by the input characters and recording the corresponding output characters.

[^0]Example 2. Consider the finite state machine M below.

The function f_{M} maps (for example) $01010 \mapsto x y z y x, 0010110 \mapsto x x y z y x x$, and $11110 \mapsto y x y x x$.
Example 3. We write a finite state machine for a unit delay of a bit string; the corresponding function adds a 0 prefix to a bit string and replicates the rest of the string, except for the last character.

Intuitively if we are at state b, the machine has just read a 0 ; similarly, if we are at state c, then the machine has just read a 1 . The transition function appropriately moves between states based on this idea. The write function then behaves appropriately, always writing a 0 when transitioning from state b, and always writing a 1 when transitioning from state c; the first step (transitioning from state a) always writes a 0 as a pad.

Example 4. We give a machine to recognize each 11 substring of a bit string, writing 1 upon recognition.

The states a, b, and c intuitively correspond to having read zero, one, and two 1 's in sequence respectively. Thus we only write a 1 when transitioning into state c. We transition to state a whenever we read a 0 .
Example 5. We give a machine to recognize each 101 substring of a bit string, writing 1 upon recognition.

The states a, b, and c intuitively correspond to having read zero, one, and two correct characters in sequence.
Example 6. We give a machine for performing binary addition; for this machine $I=\{0,1\}^{2}$ and $O=\{0,1\}$.

First we make a few notes on how to apply our machine. A bit string $x_{0} x_{1} \ldots x_{n}$ of length $n+1$ encodes the integer $m=\sum_{k=0}^{n} x_{k} 2^{k}$; this is the reverse of the binary representation of m. To add two integers m and n, encode them as above, add an end zero to both strings and pad the end of the shorter by enough zeroes that the two have the same length; say this procedure results in $m \rightsquigarrow x_{0} x_{1} \ldots x_{k}$ and $n \rightsquigarrow y_{0} y_{1} \ldots y_{k}$. Now apply the machine to the input string $z=\left(x_{0} y_{0}\right)\left(x_{1} y_{1}\right) \ldots\left(x_{k} y_{k}\right)$. Intuitively state a means all addition carries are resolved, and state b means there is an unresolved carry; our padding ensures we resolve all carries.

[^0]: ${ }^{1}$ We do so because we will need to change the state current state as we read; the easiest way to do so for this discussion is to consider the machine with a different initial state. We encode the overwrite as the second entry of our ordered pair.

