
Notes on Finite State Machines

Scribe: Peter Orselli Lecturer/Editor: Chris Eppolito

27 April 2020

We want to mathematically analyze algorithms; we begin with a simple model of an algorithm, which
allows both input and output.

Definition. A finite state machine is a sextuple M = (S, I,O, t, w, s0) with

1. a finite set S of states with a distinguished initial state s0 ∈ S,

2. finite sets I and O of input symbols and output symbols respectively,

3. a transition function t : S × I → S,

4. an output function w : S × I → O, and

We sometimes abbreviate the name “finite state machine” to “state machine” or simply “ machine”.

Remark. This way of describing a machine is verbose! We can more compactly express them as directed
graphs with some decorations. We represent states by vertices; the initial state is marked by an unmarked
arrow pointing in. The transition and output functions are represented with directed edges with labels.

Example 1. We describe a finite state machine M = (S, I,O, t, w, s0). Let S = {a, b, c}, s0 = a, and
I = {0, 1} = O. We define t and w in the table below.

t w
0 1 0 1

a
b
c

b a
b c
a c

0 1
1 0
1 1

We may represent this finite state machine as a digraph, given below.

a

b c

0, 0

1, 1

0, 1 1, 0

0, 1

1, 1

Before continuing, we give some additional terminology to facilitate our discussion.

Definition. An alphabet is a finite set of symbols. A word or string in an alphabet A is a finite sequence
of symbols of A. The set of all words in A is denoted A∗.

The empty word, denoted ε, is the unique word of length 0. A bit string is a word in {0, 1}.

For the purposes of the following discussion, we write a state machine M with initial state s0 as a
pair (M, s0).1 A machine (M, s0) defines a function f(M,s0) : I∗ → O∗ (recursively) as follows. We define
f(M,s0)(ε) = ε, and f(M,s0)(a1a2 . . . ak) = wM (s0, a1)f(M,tM (w1,s0))(a2 . . . ak) where a1, a2, · · · , ak ∈ I. Using
the digraph representation, computing fM (a) amounts to following arrows labeled by the input characters
and recording the corresponding output characters.

1We do so because we will need to change the state current state as we read; the easiest way to do so for this discussion is
to consider the machine with a different initial state. We encode the overwrite as the second entry of our ordered pair.

1



math314-01-s20 (Eppolito) Notes on Finite State Machines 27 April 2020

Example 2. Consider the finite state machine M below.

a b c0, x

1, y

0, z

1, x

1, y

0, x

The function fM maps (for example) 01010 7→ xyzyx, 0010110 7→ xxyzyxx, and 11110 7→ yxyxx.

Example 3. We write a finite state machine for a unit delay of a bit string; the corresponding function
adds a 0 prefix to a bit string and replicates the rest of the string, except for the last character.

a

b

c

0, 0

1, 0

0, 0

1, 0 0, 1

1, 1

Intuitively if we are at state b, the machine has just read a 0; similarly, if we are at state c, then the machine
has just read a 1. The transition function appropriately moves between states based on this idea. The write
function then behaves appropriately, always writing a 0 when transitioning from state b, and always writing
a 1 when transitioning from state c; the first step (transitioning from state a) always writes a 0 as a pad.

Example 4. We give a machine to recognize each 11 substring of a bit string, writing 1 upon recognition.

a b c0, 0
1, 0

0, 0

1, 1

0, 0

1, 1

The states a, b, and c intuitively correspond to having read zero, one, and two 1’s in sequence respectively.
Thus we only write a 1 when transitioning into state c. We transition to state a whenever we read a 0.

Example 5. We give a machine to recognize each 101 substring of a bit string, writing 1 upon recognition.

a b c0, 0
1, 0

1, 0
0, 0

0, 0

1, 1

The states a, b, and c intuitively correspond to having read zero, one, and two correct characters in sequence.

Example 6. We give a machine for performing binary addition; for this machine I = {0, 1}2 and O = {0, 1}.

a b

01, 1

00

10 11

10

11

01

00

First we make a few notes on how to apply our machine. A bit string x0x1 . . . xn of length n+ 1 encodes the
integer m =

∑n
k=0 xk2k; this is the reverse of the binary representation of m. To add two integers m and n,

encode them as above, add an end zero to both strings and pad the end of the shorter by enough zeroes that
the two have the same length; say this procedure results in m x0x1 . . . xk and n y0y1 . . . yk. Now apply
the machine to the input string z = (x0y0)(x1y1) . . . (xkyk). Intuitively state a means all addition carries are
resolved, and state b means there is an unresolved carry; our padding ensures we resolve all carries.

Page 2


