
Notes on the Prüfer Code

Scribe: Lesly Canales Lecturer/Editor: Chris Eppolito

24 April 2020

Our goal for today is to illustrate a method of enumerating all trees T with V (T ) = {0} ∪ [n]. We let 0
be the root of our trees (i.e. 0 is distinguished). A leaf of a rooted tree is a non-root vertex of degree one.

Our method for enumerating labeled trees naturally involves efficiently encoding such trees.

Example 1. We explore several methods of encoding trees, illustrating on the tree below.

0

1

2

3

4

56 7

1. Graph encoding.

We can näıvely encode our tree as a graph T = ({0, 1, 2, 3, 4, 5, 6, 7}, {03, 06, 04, 14, 24, 25, 47}).

2. Matrix Encoding.

As trees are connected, every vertex is the end of some edge (unless n = 0); thus we can recover the
vertex set V (T ) = {0} ∪ [n] from the edge set, and we encode E(T ) in a 2× n matrix.[

0 0 0 1 2 2 4
3 6 4 4 4 5 7

]
Note that there are many encodings of T by such a matrix; we want a canonical encoding.

3. Depth First Search Matrix.

Starting at the root 0, we use a depth-first-search to traverse the tree and recording edges in a column
as we encounter them (we record the parent in the top row and the child in the bottom row). We first
follow the minimum-possible-index at a branching if there is a choice.

0

3

4

1

2

576

0

3

4

1

2

576

 0

3

4

1

2

576

 0

3

4

1

2

576

 0

3

4

1

2

576

 0

3

4

1

2

576

 0

3

4

1

2

576

 

This yields a canonical encoding of T (we have eliminated all possible choices). Note that the bottom
row of the depth-first-search matrix is a permutation of the non-root nodes of T .[

0 0 4 4 2 4 0
3 4 1 2 5 7 6

]
A best possible encoding of a tree would forget a row of our matrix, only storing the minimum necessary

data to reconstruct the tree. None of the encodings thus far are structured enough for this kind of reduction.
We will now describe the Prüfer1 code. Instead of traveling from the root outwards (as we did with the

depth-first-search), we’ll decompose the tree by removing one leaf at a time. In order to make sense of this
step, we need the following simple lemma (which we have seen before) and corollary.

1This name is German; it is pronounced roughly the same as you would say “proofer” English.

1



math314-01-s20 (Eppolito) Notes on the Prüfer Code 24 April 2020

Lemma. Every tree with at least two vertices has a leaf.

Corollary. Every rooted tree can be obtained from K1 by adding leaves.

Given a sequence S = (s1, s2, . . . , sk) and an x, for ease of notation we let (S, x) := (s1, s2, · · · , sk, x)
denote the sequence obtained by appending x to the end of S. Now we give the algorithm defining the Prüfer
code of a labeled tree.

Algorithm (Prüfer Code Construction). Let T be a tree with V (T ) = {0} ∪ [n] and root 0.

1. Let k = 0 and define T0 := T and C0 := ().

2. While k ≤ n− 1:

(a) Let vk denote the minimum leaf of Tk and let uk denote its unique neighbor in Tk.

(b) Define Tk+1 := Tk \ vk and Ck+1 := (Ck, uk).

(c) Increment k and continue.

3. Output Cn−1, the Prüfer code of T .

Example 2. We compute the Prüfer code of the labeled tree from Example 1. We visualize the construction
as a sequence of matrices, adding the minimum-index leaf-edge at each step; we enter the leaf at the top row
of the matrix and its parent on the bottom row. The first 7− 1 entries of the bottom row is the Prüfer code.[

1 3 5 2 6 7 4
4 0 2 4 0 4 0

]
Remark. Let T be a rooted tree with V (T ) = {0} ∪ [n].

1. The Prüfer code of T is a sequence in V (T ) with n − 1 entries; this encoding does not require us to
keep the last parent (which would always be 0).

2. For each n ∈ N the Prüfer code defines a function Pn : {Trees on {0, 1, . . . , n}} → {0, 1, . . . , n}n−1.

The Prüfer code recovers the tree structure; the inverse function P−1
n is given via the algorithm below.

Algorithm (Inverse Prüfer Code Construction). Let C ∈ {0, 1, . . . , n}n−1.

1. Define k = 1, let A1 := {i ∈ [n] : i is not an entry of C}, and define L1 = ().

2. While Ak 6= ∅:

(a) Define mk := minAk and Lk+1 := (Lk,mk).

(b) Let a denote the kth entry of C and define Ak+1 := Ak \ {mk} if a appears in C after the kth

entry, and Ak+1 := Ak \ {mk} ∪ {a} otherwise.

(c) Increment k and continue.

3. Output T = ({0, 1, . . . , n}, {lkck : k ∈ [n]}) where cn = 0.

Example 3. Tree assigned to the code C = (4, 0, 2, 4, 0, 4) is computed precisely the tree from Example 1.
We visualize the procedure as filling out the top row of a matrix with bottom row (C, 0), adding the smallest
available label to the top row at each step.

The following proposition (which we will not prove here) yields the solution to our initial question.

Proposition. For all n ∈ Z+, the function Pn is a bijection.

Corollary. There are (n + 1)n−1 labeled trees on n + 1 vertices for all n ∈ N.

Page 2


