Notes on Spanning Trees

Scribe: Sophia Azaraev Lecturer/Editor: Chris Eppolito

22 April 2020

Definition. Given a graph G, a spanning tree in G is a subgraph $T \leq G$ such that T is a tree and V(T) = V(G) vertices in T are vertices of G.

Example 1. We give a spanning tree T of the graph G below; the edges of the T are colored green.

Proposition. Every connected graph has a spanning tree.

Proof. Let G be a connected graph. We proceed by induction on #E(G).

Base Case: If #E(G) = 0, then $G = K_1$ is its own spanning tree.

Inductive Step: Suppose the result holds for all graphs with k edges for some $k \in \mathbb{N}$, and assume G has k + 1 edges. If G has an edge $e \in E(G)$ such that $G \setminus e$ is connected, then $G \setminus e$ has k edges, so it has a spanning tree $T \leq G \setminus e \leq G$ by the induction hypothesis. Otherwise, for every edge e of G, we have $G \setminus e$ is disconnected; thus G is minimally connected, so G is a tree (and thus its own spanning tree).

Hence the original statement holds by induction.

Next we will look at a small example of spanning trees.

Example 2. We will find all subsets of $S = \{1, 5, 7, 17, 27, 42\}$ having sum 49 by building a spanning tree in the graph G with $V(G) = \{T \subseteq S : \sum_{t \in T} t \leq 49\}$. To build our spanning tree we start with vertex \emptyset and add elements to the set, choosing "next largest" elements at each stage. We depict this process below.

TREEPICTURE!

Oftentimes in applications we want a spanning tree minimizing some objective function on connections.

Definition. An (edge)-weighted graph is a pair (G, w) where G is a graph and $w: E(G) \to \mathbb{R}$ is a function. The weight of a subgraph $H \leq G$ is $w(H) := \sum_{e \in E(H)} w(e)$.

Example 3. The following is an example of a weighted graph; weights are given as labels on edges.

Problem. Given a weighted connected graph (G, w), compute a minimum weight spanning tree $T \leq G$.

Algorithm (Prim's Algorithm). Let (G, w) be a weighted connected graph.

- 1. Let $T_1 = (\{v_1\}, \emptyset)$ for any vertex $v_1 \in V(G)$.
- 2. While $V(T_k) \neq V(G)$:
 - (a) Choose a minimum weight edge $e_k \in E(G) \setminus E(T_k)$ with exactly one end in $V(T_k)$.
 - (b) Let $T_{k+1} \coloneqq T_k \cup \{e_k\}$ and continue.
- 3. Output T_n .

Note that there are choices involved in Prim's algorithm; the output might depend on these choices, but the amazing fact is that the weight of the result is always the same!

Proposition. Prim's Algorithm always results in a minimum weight spanning tree.

Example 4. We apply Prim's Algorithm to obtain a minimum weight spanning tree in our weighed graph.

The step-by-step results are outlined in green below.

