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Definition. A graph is acyclic when it has no cycle subgraphs. A tree is a connected acyclic graph.

Proposition. Let G be a graph. The following are equivalent.

1. Graph G is a tree.

2. Graph G is a connected acyclic graph.

3. Graph G is minimally connected (i.e. G is connected but for all e ∈ E(G) we have G\e is not connected).

4. Graph G has a unique pair connecting each pair of vertices.

5. Graph G is maximally acyclic (i.e. G is acyclic, but any new edge e creates a cycle in G ∪ e).

Proof. Let G be a graph.
2 =⇒ 3: Assume G is connected and acyclic. Let e ∈ E(G) and consider G \ e. Let u, v ∈ V (G) be the

ends of e in G. We know this is a path from u to v in G. Assume to the contrary, there is a path P from u
to v in G \ e such that P does not contain e; thus (u, P, v, e, u) is a cycle in G, contradicting the assumption
that G is acyclic. Thus G \ e is disconnected. Hence G is minimally connected.

3 =⇒ 4: Assume G is minimally connected. Let u, v ∈ V (G. As G is connected, there is a path P
connecting u to v in G. If u = v this is trivial. Otherwise there is an edge e in P . G \ e is disconnected so
every path from u to v in G crosses e. As e was arbitrary, P is the unique path connecting u to v.

4 =⇒ 5: Assume every pair of vertices in G has a unique path connecting them. Suppose we are given an
additional edge e. Let u, v ∈ V (G) denote the ends of e. We know there is a unique path P in G connecting
u to v; thus P does not contain e, and we see (u, P, v, e, u) is a cycle in G∪ e. Hence G is maximally acyclic.

5 =⇒ 2: Assume G is maximally acyclic. Let u, v ∈ V (G). Add an edge e connecting u to v; this creates
a cycle C in G by our assumption that G is maximally acyclic. Now C must use e lest G contains a cycle.
Thus removing e from C yields a path P = C \ e which has u and v as its ends. Hence G is connected.

Remark. This characterization applies to all trees; for finite trees we can extend the result.

Definition. A leaf of a tree is a vertex of degree 1.

Proposition. Every finite tree with at least two vertices has a leaf.

Proof. Let T be a finite tree with n ∈ Z≥2 vertices, and assume to the contrary that no vertex of G has
degree 1. Now deg(v) ≥ 2 for all v ∈ V (T ) as T is connected and has at least two vertices. Let v0v1 be
any edge of T and define W1 = (v0, v1). Having defined Wk = (v0, v1, . . . , vk) with vi−1vi ∈ E(G) for each
i ∈ [k], note that deg(vk) ≥ 2 implies there is a vertex vk+1 ∈ V (T ) \ {vk−1} with vkvk+1 ∈ E(G); define
Wk+1 = (v0, v1, · · · , vn) and continue this process until k+1 = n. Now vi = vj for some 0 ≤ i < j ≤ n by the
Pigeonhole Principle. Choosing a pair 0 ≤ i < j ≤ n such that vi = vj and vk 6= vm for all i ≤ k < m < j, we
see (vi, vi+1, · · · , vj−1, vj) is a cycle in T ; but this is absurd, as T is acyclic. Hence T must have a leaf.

We leave the following corollary as an exercise for students to test their understanding.

Corollary. Let G be a graph with n ∈ Z+ vertices. The following are equivalent.

1. Graph G is a tree.

2. Graph G has n− 1 edges and is connected.

3. Graph G has n− 1 edges and is acyclic.
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