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Definition. A graph is acyclic when it has no cycle subgraphs. A tree is a connected acyclic graph.
Proposition. Let G be a graph. The following are equivalent.
1. Graph G is a tree.

2. Graph G is a connected acyclic graph.
3. Graph G is minimally connected (i.e. G is connected but for all e € E(G) we have G\e is not connected).
4. Graph G has a unique pair connecting each pair of vertices.

5. Graph G is mazimally acyclic (i.e. G is acyclic, but any new edge e creates a cycle in GUe).

Proof. Let G be a graph.

2 = 3: Assume G is connected and acyclic. Let e € E(G) and consider G \ e. Let u,v € V(G) be the
ends of e in G. We know this is a path from u to v in G. Assume to the contrary, there is a path P from u
to v in G\ e such that P does not contain e; thus (u, P,v,e,u) is a cycle in G, contradicting the assumption
that G is acyclic. Thus G\ e is disconnected. Hence G is minimally connected.

3 = 4: Assume G is minimally connected. Let u,v € V(G. As G is connected, there is a path P
connecting u to v in G. If uw = v this is trivial. Otherwise there is an edge e in P. G \ e is disconnected so
every path from v to v in G crosses e. As e was arbitrary, P is the unique path connecting u to v.

4 = 5: Assume every pair of vertices in G has a unique path connecting them. Suppose we are given an
additional edge e. Let u,v € V(G) denote the ends of e. We know there is a unique path P in G connecting
u to v; thus P does not contain e, and we see (u, P,v,e,u) is a cycle in GUe. Hence G is maximally acyclic.

5 = 2: Assume G is maximally acyclic. Let u,v € V(G). Add an edge e connecting u to v; this creates
a cycle C' in G by our assumption that G is maximally acyclic. Now C must use e lest G contains a cycle.
Thus removing e from C' yields a path P = C'\ e which has v and v as its ends. Hence G is connected. [

Remark. This characterization applies to all trees; for finite trees we can extend the result.
Definition. A [eaf of a tree is a vertex of degree 1.
Proposition. Every finite tree with at least two vertices has a leaf.

Proof. Let T be a finite tree with n € Z>o vertices, and assume to the contrary that no vertex of G' has
degree 1. Now deg(v) > 2 for all v € V(T') as T is connected and has at least two vertices. Let vguv; be
any edge of T and define Wy = (vg,v1). Having defined Wy = (vg,v1,...,vg) with v,_1v; € E(G) for each
i € [k], note that deg(vx) > 2 implies there is a vertex vg41 € V(T') \ {vg—1} with vpviy1 € E(G); define

W1 = (vo,v1,- -+ ,vpn) and continue this process until k+1 = n. Now v; = v; for some 0 <4 < j < n by the
Pigeonhole Principle. Choosing a pair 0 <7 < j < n such that v; = v; and vy # vy, foralle <k <m < j, we
see (Vi, Viy1,- -+ ,vj—1, ;) is a cycle in T'; but this is absurd, as T is acyclic. Hence T' must have a leaf. [J

We leave the following corollary as an exercise for students to test their understanding.
Corollary. Let G be a graph with n € Z% wvertices. The following are equivalent.
1. Graph G is a tree.

2. Graph G has n — 1 edges and is connected.
3. Graph G has n — 1 edges and is acyclic.



