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All graphs here are assumed to be finite. We begin by extending a definition from a previous lecture.

Definition. Let G be a graph.
A walk in G is a sequence W = (v0, e1, v1, · · · , vn−1, en, vn) such that for all i ∈ [n] we have ei is an edge

of G with ends vi−1 and vi. Walk W is closed when v0 = vn; otherwise W is open.
Two vertices x and y are connected in G when there is a walk from x to y in G.
A trail in G is a walk which does not repeat any edges.

Example 1. The walk W = (1, 13, 3, 23, 2, 24, 4, 34, 3, 35, 5) is a trail in the graph K5.
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Note that even though a trail cannot reuse edges, it may repeat vertices.

Definition. An Euler trail in graph G is a trail which uses every edge of G.

Showing a graph has an Euler trail amounts to exhibiting such a trail.

Example 2. Every cycle graph Cn has an Euler trail, obtained by traveling around the cycle.

Example 3. The complete graph K5 has an Euler trail, namely

W = (1, 12, 2, 23, 3, 34, 4, 45, 5, 15, 1, 13, 3, 35, 5, 25, 2, 24, 4, 14, 1).

Example 4. The graph K4 does not have an Euler trail. First note that K4 is a simple graph, so every walk
in K4 is determined by its sequence of vertices. Assume to the contrary that W = (v0, v1, v2, v3, v4, v5, v6)
determines an Euler trail in K4. Permuting labels we may assume W = (1, 2, 3, v3, v4, v5, 1); note v3 ∈ {1, 4}.
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If v3 = 1, then v4 = 4 as 12 and 13 are already in W = (1, 2, 3, 1, 4, v5, 1); but now 1v5 is already used by W .
Thus v3 = 4; if v4 = 2, we cannot walk further—thus W = (1, 2, 3, 4, 1, 3, v5, 1), and we can’t walk along 24.
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Hence K4 does not have any Euler trail.
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The above argument is somewhat painful, and required us to analyze all possible walks in K4 (with some
minor simplifications). In general, we would like a criterion to decide whether or not a graph G has an Euler
trail by some simpler means. For example, does the Petersen graph have an Euler trail?
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We will find such a criterion by analyzing two cases: when G has a closed/open Euler trail.

Proposition. A connected graph has a closed Euler trail if and only if all of its vertices have even degree.

Lemma. If all vertices of graph G have degree at least two, then G has a cycle.

Proof of Lemma. Let G be a graph having all vertices of degree at least two, and let v0 ∈ V (G). As
deg(v0) ≥ 2 there is an edge incident to v0. Indeed we may walk from v0 to a vertex v1 by some edge e1; let
W1 := (v0, e1, v1). Having Wk = (ve, e1, v1, e2, ......, vk−1, ek, vk), either vk = vi for some 0 ≤ i < k or not.
If so, we have built a cycle C = (vi, ei+1, vi+1, . . . , vk−1, ek, vk). Otherwise, deg(vk) ≥ 2 allows us to extend
Wk to Wk+1 by following an edge ek+1 from vk to another vertex vk+1. The walk W#V (G) must repeat a
vertex by the pigeonhole principle, so this procedure must yield a cycle.

Proof of Proposition. Let G be a connected graph.
(=⇒): Suppose G has a closed Euler trail W and let x ∈ V (G) be arbitrary. Every instance of x in W is

flanked by two incidences (unless v0 = x = vn, in which case we again have two incidences); as all incidences
involving v appear exactly once we have that deg(v) is even.

(⇐=): Assume every vertex of G has even degree. We proceed by (strong) induction on #E(G).
Base Case: If #E(G) = 0, then G = K1, and the unique walk in G is an Euler trail.
Inductive Step: Assume every connected graph with all vertices of even degree and having fewer edges

than G has an Euler Trail. We may assume #E(G) > 0. Obtain a cycle C in G by the Lemma. Let G′

denote the graph obtained from G by removing all edges of C, and let G1, G2, . . . , Gk denote the connected
components of G′. By our induction hypothesis, each Gi has an Euler trail Wi. Construct an Euler trail in
G by writing C as a closed walk C = (v0, e1, v1, . . . , vn−1, en, vn), for each i ∈ [k] there is a smallest index
ji ∈ [n] such that vji ∈ V (Hi). The desired Euler trail in G is given by following C, following Wi when
encountering vji , and then continuing along C again.

We now leverage the above result to prove a similar result for graphs with an open Euler trail.

Corollary. A connected graph has an open Euler trail if and only if it has exactly two vertices of odd degree.

Proof. Let G be a connected graph. If G has an open Euler trail, then the first and last vertices of such a
trail necessarily have odd degree and every other vertex has even degree. If G has exactly two vertices u and
v of odd degree, we consider the graph G′ obtained by adding an edge e between u and v. Every vertex of G′

has even degree, so G′ has a closed Euler trail W by the preceding proposition. Cyclically permuting W and
exchanging the roles of u and v if necessary, we may assume W = (u, e, v = v0, e1, v1, . . . , vn−1, en, vn = u).
Thus the walk W = (v = v0, e1, v1, . . . , vn−1, en, vn = u) is an open Euler trail in G = G′ \ e.

The Hamiltonian graphs are is a natural analogue of Eulerian graphs, replacing edges by vertices.

Definition. A Hamilton cycle is a cycle visiting every vertex exactly once.

Despite the strong parallelism between these questions, there is no known simple condition to character-
izing Hamiltonicity; there are known separate sufficient conditions and necessary conditions.

Example 5. Consider the following classes of graphs.

1. The complete graphs Kn and the cycle graphs Cn Hamiltonian for all n ≥ 3.

2. The path graph Pn is not Hamiltonian; more generally, any acyclic graph fails to be Hamiltonian.

3. The Petersen graph is not Hamiltonian (proving this requires some work).
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