# Notes on Counting Anagrams 

Lecturer: Chris Eppolito, Scribe: Kurt Manrique Nino

20 March 2020

Definition. An anagram is any rearrangement of the symbols of a word.
Example 1. The word ODD has the following anagrams; there are three total.

1. ODD
2. DOD
3. DOD

We want to count the anagrams of a given word in general.
Remark. The answer is not $n$ ! for $n$-letter words in general because some symbols are indistinguishable; in the example above, we cannot tell the two D's apart.

Example 2. Count the anagrams of SUPERCALIFRAGILISTICEXPIALIDOCIOUS.

Solution: This word has 34 letters total. Separating the word into like symbols we see

## AAA CCC D EE F G IIIIIII LLL OO PP RR SSS T UU X.

Finally, build the anagrams of this word by placing letters of the same type simultaneously in the word (i.e. in the 34 available positions for letters) via the following procedure.

| 1. Place all A's. | $\binom{34}{4}$ choices | 9. Place all O's. | $\binom{13}{2}$ choices |
| :--- | ---: | :--- | ---: |
| 2. Place all C's. | $\binom{31}{3}$ choices | 10. Place all P's. | $\binom{11}{2}$ choices |
| 3. Place all D's. | $\binom{28}{1}$ choices | 11. Place all R's. | $\binom{9}{2}$ choices |
| 4. Place all E's. | $\binom{27}{2}$ choices | 12. Place all S's. | $\binom{7}{3}$ choices |
| 5. Place all F's. | $\binom{25}{1}$ choices | 13. Place all T's. | $\binom{4}{1}$ choices |
| 6. Place all G's. | $\binom{24}{1}$ choices | 14. Place all U's. | $\binom{3}{2}$ choices |
| 7. Place all I's. | $\binom{23}{7}$ choices | 14. |  |
| 8. Place all L's. | $\binom{16}{3}$ choices | 15. Place all X's. | 1 choices |

Hence by the Product Principle we obtain the precise number of anagrams below.

$$
\begin{aligned}
& \binom{34}{4}\binom{31}{3}\binom{28}{1}\binom{27}{2}\binom{25}{1}\binom{24}{1}\binom{23}{7}\binom{16}{3}\binom{13}{2}\binom{11}{2}\binom{9}{2}\binom{7}{3}\binom{4}{1}\binom{3}{2} \\
= & 10946638851748378383661056000000
\end{aligned}
$$

For reference, 10946638851748378383661056000000 is astronomically large (roughly one-hundred times the radius of the observable universe in millimeters). Writing one-billion anagrams every second, it would still take 25000 times the age of the universe to list them. I won't extend the homework deadline that long...

