Notes on Counting Anagrams

Lecturer: Chris Eppolito, Scribe: Kurt Manrique Nino 20 March 2020

Definition. An anagram is any rearrangement of the symbols of a word.

Example 1. The word ODD has the following anagrams; there are three total.

1. ODD 2. DOD 3. DOD

We want to count the anagrams of a given word in general.

8. Place all L's.

Remark. The answer is not n! for n-letter words in general because some symbols are indistinguishable; in the example above, we cannot tell the two D's apart.

Example 2. Count the anagrams of SUPERCALIFRAGILISTICEXPIALIDOCIOUS.

Solution: This word has 34 letters total. Separating the word into like symbols we see

AAA CCC D EE F G IIIIIII LLL OO PP RR SSS T UU X.

Finally, build the anagrams of this word by placing letters of the same type simultaneously in the word (i.e. in the 34 available positions for letters) via the following procedure.

1 choices

1. Place all A's.	$\binom{34}{4}$ choices	9. Place all O's.	$\binom{13}{2}$ choices
2. Place all C's.	$\binom{31}{3}$ choices	10. Place all P's.	$\binom{11}{2}$ choices
3. Place all D's.	$\binom{28}{1}$ choices	11. Place all R's.	$\binom{9}{2}$ choices
4. Place all E's.	$\binom{27}{2}$ choices	10 Dl Il C!	(7)
5. Place all F's.	$\binom{25}{1}$ choices	12. Place all S's.	$\binom{7}{3}$ choices
6. Place all G's.	$\binom{24}{1}$ choices	13. Place all T's.	$\binom{4}{1}$ choices
7. Place all I's.	$\binom{23}{7}$ choices	14. Place all U's.	$\binom{3}{2}$ choices

 $\binom{16}{3}$ choices 15. Place all X's.

Hence by the Product Principle we obtain the precise number of anagrams below.

$$\begin{pmatrix} 34 \\ 4 \end{pmatrix} \begin{pmatrix} 31 \\ 3 \end{pmatrix} \begin{pmatrix} 28 \\ 1 \end{pmatrix} \begin{pmatrix} 27 \\ 2 \end{pmatrix} \begin{pmatrix} 25 \\ 1 \end{pmatrix} \begin{pmatrix} 24 \\ 1 \end{pmatrix} \begin{pmatrix} 23 \\ 7 \end{pmatrix} \begin{pmatrix} 16 \\ 3 \end{pmatrix} \begin{pmatrix} 13 \\ 2 \end{pmatrix} \begin{pmatrix} 11 \\ 2 \end{pmatrix} \begin{pmatrix} 9 \\ 2 \end{pmatrix} \begin{pmatrix} 7 \\ 3 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
 =109466388517483783836610560000000

For reference, 10946638851748378383661056000000 is astronomically large (roughly one-hundred times the radius of the observable universe in millimeters). Writing one-billion anagrams every second, it would still take 25000 times the age of the universe to list them. I won't extend the homework deadline that long...